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Niche versus Community

While different species may
share or live in a similar habitat,
ecological niche is their unique

way of living within it.
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Hutchinson: ”the set of biotic and abiotic
conditions in which a species is able to (.,,‘\)\ q
persist and maintain stable population sizes." reservolr animals [mammals |

Community ecology examines how interactions among species and their environment

affect the abundance, distribution and diversity of species within communities.
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Community Ecology

* A communityis an assemblage of species
(populations) living close enough together
for potential interaction in a habitat
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Ecology is the scientific analysis and study of

interactions

among organisms and their environment

Physics is the scientific analysis and study of

interactions

between matter and energy

How have we understood 1nteractions in physics?
Through Spatial Modeling!
Studying where things are, and when,
relative to each other.



https://en.wikipedia.org/wiki/Science

Spatial Modeling in the past...

Data — > Phenomenology — = Taxonomy > Theory

Tycho Brahe's Mars Observations
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Phenomenology
JI(sun) 4 2 -
Kepler's Laws
B A2
“ 1. The orbit of a planet is an ellipse with the Sun at
plang¢2 planctl "= a2 one of the two foci.

o 2. A line segment joining a planet and the Sun sweeps
out equal areas during equal intervals of time.
3. The square of the orbital period of a planet is
proportional to the cube of the semi-major axis of its orbit.
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Spatial Modeling in the past...

Data — > Phenomenology — > Taxonomy — > Theory

Tycho Brahe's Mars Observations
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Isaac Newton computed the acceleration of a planet moving according to Kepler's first and second law.
1 The direction of the acceleration is towards the Sun.
2 The magnitude of the acceleration is inversely proportional to the square of the planet's distance from the Sun (the inverse square
law).
This implies that the Sun may be the physical cause of the acceleration of planets.
Newton defined the force acting on a planet to be the product of its mass and the acceleration. So:
1 Every planet is attracted towards the Sun.
2 The force acting on a planet is in direct proportion to the mass of the planet and in inverse proportion to the square of its distance
from the Sun.
The Sun plays an unsymmetrical part, which is unjustified. So he assumed, in Newton's law of universal gravitation:
1 All bodies in the solar system attract one another.
2 The force between two bodies is in direct proportion to the product of their masses and in inverse proportion to the square of the
distance between them.
As the planets have small masses compared to the Sun, the orbits conform approximately to Kepler's laws. Newton's model fits actual
observations more accurately.
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The Diflerence between Physical and @ 3

Lomplex Adaptive Systems
In Complex Adaptive Systems...
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Imagine what you can
say about a city

Multifactoriality
Adaptation

versus  a crystal as big as a city!
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To say a lot, you need to have a lot of data...
Big Data... A Data Revolution!

The data revolution and the access to big,
deep data is revolutionising our ability to
study the immensely rich
phenomenology of complex systems and
construct more appropriate taxonomies
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covxee “Keplerian™ Ecological

models

What do we want to predict? What affects it?

= (1 2 C3 ..., CN) The “niche”

the presence, or abundance, X (X1 X2 X3 . a
of,... of one or more
populations or taxa

A large part of the complexity
is in the multi-factoriality
of both C and X. Adaptation is

S(C | X) inherent in the fact that P(C | X)
Risk score can change in time.

X = X(sd)+X(se)+X(n)+X(ev)+X(g)+X(af)+X(hm)+X(3{1)+X(sp)+...

Macro-Climactic Micro-Climatic factors

Prey species
factors

Hydrography Human activity
Behavioural

characteristics Phenotypic
characteristics

Competitor species Predator species

Problems of co-dependence and causality



Are there generic topologies for

Can they b Iti-modal?
Niche or Ecosystemic landscapes? B ocd

Niche

P(CIX)
1 Null

hvpothesis -
0.8 - yP

0.6

0.4 -

0.22 A
0 =
0

3
Mean annual “Rature 4 0
5
Abundance of
temperature

prey species

Anti-niche

Are they rugged or smooth? What are the “right” coordinates?

What are the patterns of epistasis?



"here’s lots ol th

Normally data mining takes place in a “categorical” space (the equivalent in ecology is a niche
space). However, most ecological data is spatio-temporal at multiple scales. Spatial data mining is
much less developed than standard data mining.

e Collection data «—— SNIB, CONABIO
e Ecological niche data |

e Ecological niche model data
e Socio-economic data
e Socio-demographic data

Problems with spatial data: e Phenotypic data |
* Vegetable and crop cover .
Different sources * Geographical data A O N 0 0 O A
Different location, data base, access,... e Medical and public health data... 1 L1 | }’
Different data types : L S P
categorical, metric, continuous, discrete,... P S S Sl N S ' el
Different spatial resolution R '

Explicit — e.g., pixel by pixel in
environmental layers

Implicit — 30,000,000 data points versus 30

“Quality” (e.g. Phenotypic characteristic)
versus “quantity” 5

Abiotic versus biotic >

The data are represented in space and
time — spatial data mining



lemocracy of the Data:

To infer interactions from where * thlns. are

Choose a spatial resolution: give everyone one vote there.
The “Senate” versus the “Congress” approach!

: - : A1 1 3 1 23 18.6 1 1] 4
\ - ‘ " P A2 0 1 0 23 18.6 1 1] 4
. - . A37 0 2 0 23.7 18.7 1 T
\/,m/ 0 4 0 23.7 18.7 1 i P
A5 0 2 1 23.7 18.7 1 1 3
A6 2 5 2 23.7 18.7 1 1 2
A7 0 1 0 23.3 18.4 1 1 5
A8 0 2 0 22.8 18.8 1 1 3
(5. A9 1 3 1 22.8 18.8 1 1 1
A10 0 1 0 22.8 18.8 0 1 1
A11 0 0 0 22.8 18.8 0 1 1
A12 0 0 0 22.8 18.8 0 1 2
A13 0 0 0 22.8 18.8 0 0] 4
A14 0 0 0 22.8 18.8 0 0| 3
A15 0 2 0 22.8 18.8 0 1 4
A16 0 1 0 22.8 18.8 0 1 2
A17 0 0 0 22.8 18.8 0 1 1
A18 0 0 0 22.8 18.8 0 0 1
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statistical inferences

In standard data mining, for example: P(death | age) = N(death,age)/N(age);
P(death | diabetes); P(death | age,diabetes); to infer that age is a risk factor for
death, as is diabetes. Here, we count individuals who have different traits.
There is a preferred statistical unit - the individual within which we can look
for coincidences/co-occurrences. In spatial data mining this is not the case.

We must define coincidences/co-occurrences using an appropriate uniform
spatio-temporal scale.

NO co-occurrences Two co-occurrences One co-occurrence
S ae N(ab)/N(b)
:> 3 :> 5a 2b ﬁ _ P(alb)
b a ab 3 :
Dependence of species

Here we’re in geographic space a on niche variable b
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The Technical P

art

How do we decide if the frequency of co-occurrence P(a |b) is less or
more than “expected?

[ts just like flipping a coin! A binomial process. How many times when
I flip a coin of “type b” do I get result “a”?

What's my baseline, my expectation, my “null hypothesis”?

That b does not “influence"” a, so P(alb) = P(a). So, is (P(a|b) - P(a)) “big”?

epsilon(a |b) = N(b)(P(a I b) - P(a))/ (N(b)P(a)(1-P(a)))! /2

\ Standard deviation of

[f | epsilon(alb)| > 1.96, with 95% confidence we can binomial distribution.

' : : : : The right unit t
reject the null hypothesis —> possible “interaction” R AL
ig versus small.
between a and b
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""" The Technical Part

Bt what about P(C 1 X)— P(C| X1 X2 X3 .. XN
— NIEXI X2 X3 . XN/ NOXIL X2 X3 . XN

el NCXT X2 X3, XN =0, 1 ﬁ Use Bayes’ theorem
the “curse of dimensionality” P(C1X) = P(X | C)P(C)/P(X)

hd Pys(X|0) — [ POGIC)  Naiye Bayes Approximation
assume Total factorisation

BIC LX) In(P(C X))/ P(C] X)) In(P(X | CIPC ) POX | CIRE))
— ¥ In(P(X; | ©)/P(X; | C)) + In(P(C)/P(C))

_ ¥ S(C1X) + In(P(C)/P(O))

contribution to probability to find C from presence
Here we’re in niche Sp m of niche variable X; . Can compare contributions from

biotic/abiotic/topographic/ ... factors
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space to Niche Space anll vice versa

The Data Mmlng Approach | Socio-economic

factors

....................
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SPACE

Interaction
Space I

' F(g’,h’,...)
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\ow for Communities...

You can judge a man by his “friends”

or his “enemies”, or “parasites”, or “prey” or “predators” or...
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Use Complex Inferential Networks to
Represent Community Interactions

e Take nodes to be...

— Species, other taxonomic or phylogenetic groupings, groupings by
phenotypic characteristics,

* Take links to be a statistical measure of spatial

(temporal) co-occurrence
— P(Y|X), epsilon(Y|X), P(A,B|C,D), epsilon(Z|X,Y)
— What is a high/low degree of co-occurrence? (Choosing a null

hypothesis)
— What spatial (temporal) resolution? (When do things co-occur?)
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‘'wo Example Niches

Normalized niche scores

Lutzomyias love mammals,

0.2 - 2 3
never met one they didn’t like
0.15 A
& Abiotic lutzomyia
S e L Including in a fuller, richer
5 0.05 ; Land cover lutzomyia Niche Space leads to more
e N M . " "Abioticlynx predictive models (less false
(o)) ]
Z 005 1 I I I I Land cover lynx ’
!
Biotic facilitation seems to be Model perforrance as a function of score decile
more the ndtrkhjthan competition -
Lo Score decile 00
50 - & Abiotic lutzomyia
Climatic factors are more g = Mammal lutzomyia
3 =K | ‘e 40 1 :
important for determining g \l, Land coter ltadinys
S 2 . & All lutzomyia
where Lutzomyias aren’t g S tyomy,a
X “ Abiotic lutzomyi
rather than where they are 20 1 e
10 - Land cover lynx
All lynx

0 N . . | .

Chains of causality i G1E et e R

Score decile
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The Ecology of Leishmaniasis

Odocoileus virginianus

& .
- “Myotis albescens
Mtctonyctens sylvestris Molossus sinaloas

Megadontomys cryophilus e
g vs cryop ——
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& X
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J
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Microtus waterhousii S |
Peromyscus gduatemalensi 7 ; . f
d I Thyroptera tricolor High
Baiomys musculus Nyctinomops lal Iatlcaudatus \ Bassariscus sumichrasti wiop N B
Habromys Iophurus - \ \ 'Pteronotus pamellll Artibeus watsoni 3
- I . 2
alantlopteryx pllcata ! Diclidurus albus Alouatta pigra g
) Peromyscus gymnotis | 7 Vampyressa pusilla Low
Macrotus mexicanus /Flhogeessa 43arvula Pteronotus rubiginosus g .
Mommonps msos Otgi%nolus personatus "'Molossus pretlosus Myotis ele:
Vampyrum spectrum
& amandua tetradactyla o
All data before 2008 used 4 *Vampyrodes caracciol 0
eessa aeneu ~. — i : ---—:._. Bauerus dubiaquerct R
_{A s o VLS| - Lonchorhina aurita h \

rvzomys melanotis
- \

All Mexico . :
: " I:; l:uncliculus pacy a2
arollia rewcau RN S ¥ e ) . :
=TT \ L S -~ ~Mazama pandora \\ U
y \ - 7 Y

idelphis marsupialis

Sciurus deppei

.
Carollia subrufa
vhannnm 1

ciurus yucatanensi t’. ) ]
rel '-',',','_WWS&u,gau;admc,'jﬁhs Platyrrhinus helleri

Tonatia evotis
Chiroderma vulpsum

Peromyscus perfulvus
e ; Qs —] “@turnira liliurrexi...

Tylomys nudicaudus

MNyctinomops femorosaccus
High

P_anthera onca
" Choeroniscus godmani

Probability

*Spermophilus adocetus
Low

.‘M otis auriculacea

Microtus umbrosus L. ylephiletor

L arthosh Balantlopter xlo / ‘0 ” ‘ -
G anthophora b _Cuﬁtotls magna Saccopteryx bineata 7 010 uvescen\ arollia sowelli Otongctomys hatt
‘ \ \. rthogeomys hispidus

Drlhogeomys grandis \
Habromys lepturus Dasyprocta me,l({ggmys chapmani

Sciurus alleni eteromys desmarestlanus \
Coprioths i *4a romys ixtlani Dl oses! W eicho i ans
arynorhinus mexicanus
A * Tamandua mesicana Y " Peromyscus melanocarpus
Rhogeessa gracilis

Uroderma bilobatum

.Pi istrellus hesperus

Reithrodontomys chiysopsis

What does this tell us about vector control?



+ All science 1s Data Science!
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The difference now is the big, deep data available due to the Data Revolution

Much of this data is spatio-temporal - where “things” are and when

Data associated with the relative positions of “things” in space and time has allowed us to deduce
(Data —> Phenomenology —> Taxonomy —> Theory) the nature of the interactions between

physical objects: the four fundamental forces

These forces are universal and simple

* Unlike the physical world, ecologies are CAS composed of other CAS

KX

We don’t have adequate conceptual or theoretical frameworks in which to understand CAS

The phenomenology of CAS is incredibly rich and qualitatively different from that of physical
systems (multi-factorial from the micro to the macro, and adaptive)

To describe this phenomenology you need a lot of data



nclusions: Ecology

* Spatio-temporal data about organisms, relative to each other (biotic) and relative to the
environment (abiotic), can be used to deduce the nature of the interactions between them

and with the environment

<

<

* The Niche “fitness” landscape of a taxon C can be characterised quantitatively by P(C | X)

This can be done at the niche level (one to many) and at the community level (many to many)

Our formalism allows for the incorporation of any data type, data format and data resolution

using spatio-temporal data mining

<

<

<

What are their general topological and geometrical characterisations?
How rugged /smooth are they?
What is the distribution of epistasis
*  Are distributions random?
* Facilitation versus competition
What are the right coordinates?
What is the dynamics of Niche landscapes? How do they evolve?

How do we determine and characterise causal chains in ecology?
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* At the community level, spatio-temporal data can be used to construct Complex Inference
Networks (CIN) as representations of communities and ecosystems

+ How to distinguish causality from correlation?
* How to determine co-dependencies?

* As a proof of concept: The niches and community relations of diseases can be determined
via CIN

+ Identification of transmission cycles and host range
+ Leishmania, Chagas, Lyme, Dengue, Zika, West Nile,...

+ Many zoonoses are multi-host, multi-vector, multi-pathogen systems.
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Grupo de Trabajo

C3 - Centro de Ciencias de la Complejidad,

UNAM: Instituto de Biologia, UNAM:
CONABIO: Universidad Catolica de
Chile: Facultad de Medicina, UNAM

1.- Dr. Christopher R. Stephens

2.- Dr. Raul Sierra Alcocer

4 .- Dr. Constantino Gonzalez Salazar
5.- M. en C. Enrigue del Callejo

6.- M. en C. Everardo Robredo

7 .- Lic. Juan Carlos Salazar Carrillo

Publications

Competitive interactions between felid species may limit the southern distribution of
bobcats Lynx rufus

V Sanchez-Cordero, D Stockwell, S Sarkar, H Liu, CR Stephens, ...

Ecography 31 (6), 757-764, 2008

Using biotic interaction networks for prediction in biodiversity and emerging diseases
CR Stephens, JG Heau, C Gonzalez, CN Ibarra-Cerdena, ...

PLoS One 4 (5), 5725, 2009

Exploratory analysis of the interrelations between co-located boolean spatial features
using network graphs

R Sierra, CR Stephens
International Journal of Geographical Information Science 26 (3), 441-468, 2012

Constructing ecological networks: a tool to infer risk of transmission and dispersal of
Leishmaniasis

C Gonzalez-Salazar, CR Stephens

Zoonoses and public health 59 (s2), 179-193, 2012

Comparing the relative contributions of biotic and abiotic factors as mediators of species
distributions

C Gonzalez-Salazar, CR Stephens, PA Marquet

Ecological Modelling 248, 57-70, 2013

Leishmania (L.) mexicana Infected Bats in Mexico: Novel Potential Reservoirs

M Berzunza-Cruz, A Rodriguez-Moreno, G Gutiérrez-Granados, ...

PLoS neglected tropical diseases 9 (1), e0003438-e0003438, 2015

Predicting the potential role of non-human hosts in Zika virus maintenance

C Gonzalez-Salazar, CR Stephens and V. Sanchez-Cordero

submitted to Eco-health

UNDERSTANDING TRANSMISSIBILITY PATTERNS OF CHAGAS DISEASE THROUGH COMPLEX
VECTOR-HOST NETWORKS

Laura Rengifo-Correa, Constantino Gonzalez-Salazar, Juan J. Morrone, Juan Luis Téllez-Renddn,
Christopher Stephens,.submitted to PLoS Neglected Tropical diseases

Can you judge a disease host by the company it keeps? Predicting disease hosts

and their relative importance using complex networks
CR Stephens et al, submitted to PLoS Neglected Tropical diseases
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ability to model and understand ecology



