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Disease as a 
Complex Adaptive 

System

jueves 24 de octubre de 2013

Ecology is the scientific analysis 
and study of interactions among 

organisms and their environment 

Type of interaction Sign Effects

mutualism +/+ both species benefit from interaction

commensalism +/0 one species benefits, one unaffected

competition  -/- each species affected negatively

predation, parasitism, 
herbivory +/- one species benefits, one is disadvantaged

An Ecology is a Complex 

Adaptive System

Multifactorial with 
changing interactions

https://en.wikipedia.org/wiki/Science


?Just how many interactions 
can we directly observe?



Niche versus Community

Hutchinson: ”the set of biotic and abiotic 

conditions in which a species is able to 

persist and maintain stable population sizes."

Community ecology examines how interactions among species and their environment 

affect the abundance, distribution and diversity of species within communities.



Ecology is the scientific analysis and study of 

interactions 

among organisms and their environment

Physics is the scientific analysis and study of 


interactions

between matter and energy

How have we understood interactions in physics? 
Through Spatial Modeling! 


Studying where things are, and when, 

relative to each other.

https://en.wikipedia.org/wiki/Science


Spatial Modeling in the past…

Data —> Phenomenology —> Taxonomy —> Theory

Visualizing Tycho Brahe's Mars Data
Home - - - - Hven - - - - Mars - - - - Data - - - - Models - - - - Works Cited

Mars Observations
"I've studied all available charts of the planets and stars and none of them match the others. There are just as
many measurements and methods as there are astronomers and all of them disagree. What's needed is a long
term project with the aim of mapping the heavens conducted from a single location over a period of several
years." -Tycho Brahe, 1563 (age 17).

Download an Excel file with this data.

Comments about this site are always welcomed. The author can be contacted at: pafko@excite.com.

pafko.com/tycho/observe.html

Copyright 2000, Wayne Pafko

Kepler’s Laws


1. The orbit of a planet is an ellipse with the Sun at 

one of the two foci.


2. A line segment joining a planet and the Sun sweeps 

 out equal areas during equal intervals of time.

3. The square of the orbital period of a planet is 

    proportional to the cube of the semi-major axis of its orbit.

Data 

Phenomenology

https://en.wikipedia.org/wiki/Orbit
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Focus_(geometry)
https://en.wikipedia.org/wiki/Orbital_period
https://en.wikipedia.org/wiki/Semi-major_axis


Isaac Newton computed the acceleration of a planet moving according to Kepler's first and second law.

1	 The direction of the acceleration is towards the Sun.

2	 The magnitude of the acceleration is inversely proportional to the square of the planet's distance from the Sun (the inverse square 

law).

This implies that the Sun may be the physical cause of the acceleration of planets.

Newton defined the force acting on a planet to be the product of its mass and the acceleration. So:


1	 Every planet is attracted towards the Sun.

2	 The force acting on a planet is in direct proportion to the mass of the planet and in inverse proportion to the square of its distance 

from the Sun.

The Sun plays an unsymmetrical part, which is unjustified. So he assumed, in Newton's law of universal gravitation:


1	 All bodies in the solar system attract one another.

2	 The force between two bodies is in direct proportion to the product of their masses and in inverse proportion to the square of the 

distance between them.

As the planets have small masses compared to the Sun, the orbits conform approximately to Kepler's laws. Newton's model fits actual 
observations more accurately.

Spatial Modeling in the past…

Data —> Phenomenology —> Taxonomy —> Theory

Theory
F = ma


F = GMm/r2

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation


The Difference between Physical and 
Complex Adaptive Systems

In Complex Adaptive Systems… 

There’s a lot to say!

Imagine what you can 

say about a city versus a crystal as big as a city!

Multifactoriality

Adaptation



The data revolution and the access to big, 
deep data is revolutionising our ability to 

study the immensely rich 

phenomenology of complex systems and
construct more appropriate taxonomies

To say a lot, you need to have a lot of data…

Big Data… A Data Revolution!



“Keplerian” Ecological 

models

P(C|X)

X = X(sd)+X(se)+X(n)+X(ev)+X(g)+X(af)+X(hm)+X(i)+X(sp)+...
Macro-Climactic 


factors
Behavioural 


characteristics

Micro-Climatic factors

Phenotypic 

characteristics

Hydrography

Competitor species Predator species

Prey species Human activity

What do we want to predict? 

C = (C1, C2, C3, …, CN)

the presence, or abundance,

or,… of one or more 

populations or taxa

What affects it? 

The “niche” 

X = (X1, X2, X3, …, XM)

S(C|X)
Risk score

A large part of the complexity 

is in the multi-factoriality 

of both C and X. Adaptation is

inherent in the fact that P(C|X)

can change in time.

Problems of co-dependence and causality



The Niche 

Landscape

Mean annual 

temperature Abundance of 


prey species

Null 

hypothesis 

Niche

Anti-niche

Are there generic topologies for 

Niche or Ecosystemic landscapes? Can they be multi-modal?

What are the “right” coordinates?Are they rugged or smooth?

What are the patterns of epistasis?



And the data? Where are the 
“Brahes”? There’s lots of them!

• 	Collec(on	data	
• 	Ecological	niche	data	
• 	Ecological	niche	model	data	
• 	Socio-economic	data	
• 	Socio-demographic	data	
• 	Phenotypic	data	
• 	Vegetable	and	crop	cover		
• 	Geographical	data	
• 	Medical	and	public	health	data…	

The	data	are	represented	in	space	and	
(me	–	spa(al	data	mining	

Normally data mining takes place in a “categorical” space (the equivalent in ecology is a niche 
space). However, most ecological data is spatio-temporal at multiple scales. Spatial data mining is 
much less developed than standard data mining. 

Problems	with	spatial	data:


Different	sources

Different	location,	data	base,	access,…


Different	data	types	

categorical,	metric,	continuous,	discrete,…	


Different	spatial	resolution	

Explicit	–	e.g.,	pixel	by	pixel	in	

environmental	layers

	Implicit	–	30,000,000	data	points	versus	30	

“Quality”	(e.g.	Phenotypic	characteristic)	

versus	“quantity”

Abiotic	versus	biotic


SNIB, CONABIO



A Democracy of the Data:

To infer interactions from where “things” are

	
	

Cuadrante 
Sigmodon 
 hispidus 

Dipetalogaser 
maxima 

Casos  
Chagas 

Precipitación 
anual 

Temperatura 
promedio 

GARP  
Triatoma  
maximus 

GARP 
Diptaloster  
maxima 

Perfil  
agricola 

A1 1 3 1 23 18.6 1 1  4 

A2 0 1 0 23 18.6 1 1 4  

A3 0 2 0 23.7 18.7 1 1 1  

A4 0 4 0 23.7 18.7 1 1 3  

A5 0 2 1 23.7 18.7 1 1 3  

A6 2 5 2 23.7 18.7 1 1 2  

A7 0 1 0 23.3 18.4 1 1 5  

A8 0 2 0 22.8 18.8 1 1 3  

A9 1 3 1 22.8 18.8 1 1 1  

A10 0 1 0 22.8 18.8 0 1 1  

A11 0 0 0 22.8 18.8 0 1 1  

A12 0 0 0 22.8 18.8 0 1 2  

A13 0 0 0 22.8 18.8 0 0 4  

A14 0 0 0 22.8 18.8 0 0 3  

A15 0 2 0 22.8 18.8 0 1 4  

A16 0 1 0 22.8 18.8 0 1 2  

A17 0 0 0 22.8 18.8 0 1 1  

A18 0 0 0 22.8 18.8 0 0 1  

Choose	a	spa)al	resolu)on:	give	everyone	one	vote	there.	
The	“Senate”	versus	the	“Congress”	approach!	



Now we can make 

statistical inferences

a	

b	 a	

a	

b	 a	

a	

a	b	 a	

a	

a	b	 a	

	
					
								5	a			2b	

No	co-occurrences	 Two	co-occurrences	 One	co-occurrence	

In standard data mining, for example: P(death|age) = N(death,age)/N(age); 
P(death|diabetes); P(death|age,diabetes); to infer that age is a risk factor for 
death, as is diabetes. Here, we count individuals who have different traits. 

There is a preferred statistical unit - the individual within which we can look 
for coincidences/co-occurrences. In spatial data mining this is not the case. 


We must define coincidences/co-occurrences using an appropriate uniform
spatio-temporal scale.

Dependence of species 

a on niche variable b 

N(ab)/N(b) 

= P(a|b)

Here we’re in geographic space



The Technical Part

epsilon(a|b) = N(b)(P(a|b) - P(a))/(N(b)P(a)(1-P(a)))1/2 

How do we decide if the frequency of co-occurrence P(a|b) is less or 

more than “expected?

Its just like flipping a coin! A binomial process. How many times when 

I flip a coin of “type b” do I get result “a”? 


What’s my baseline, my expectation, my “null hypothesis”?


That b does not “influence" a, so P(a|b) = P(a). So, is (P(a|b) - P(a)) “big”?

Standard deviation of 

binomial distribution.

The right unit to measure 

big versus small.

If|epsilon(a|b)| >  1.96, with 95% confidence we can

reject the null hypothesis —> possible “interaction”

between a and b  



The Technical Part

Well…   N(CX1,X2,X3,…,XN) = 0, 1

the “curse of dimensionality”

Use Bayes’ theorem

P(C|X) = P(X|C)P(C)/P(X)

and 

assume

for a class C and a vector of N features X = (X1, X2, . . . , XN ), where P (C) is the
prior probability, P (X|C) the likelihood function given the data X, and P (C|X)
the posterior probability.

Unfortunately, when X is of high dimension, there are too many di↵erent prob-
abilities, P̂ (C|X), to estimate. Related to this is the fact that NCX, the number
of elements in X and C, is generally so small that statistical estimates, P̂ (C|X) of
P (C|X) are unreliable due to large sampling errors.1 Using Bayes’ theorem does
not ameliorate the problem given that statistical estimates of P̂ (X|C) su↵er from
the same problem. If there is statistical independence of the Xi in the class C how-
ever, then P (X|C) =

QN
i=1 P (Xi|C), where P (Xi|C) is the marginal conditional

probability for Xi given C. Generally, this is not the case. However, one may make
the assumption that it is approximately true, taking PNB(X|C) =

QN
i=1 P (Xi|C)

and approximate (2.1) as

PNB(C|X) =

QN
i=1 P (Xi|C)P (C)

(
QN

i=1 P (Xi|C)P (C) + P (X|C̄)P (C̄))
(2.2)

where C̄ is the complement of C. Of course, if we were to calculate P (C|X) using
(2.2) we would have to also estimate P (X|C̄), which would present the same prob-
lems as estimating P (X|C). The same naive approximation can be used in this case

too, writing P (X|C̄) =
QN

i=1 P (Xi|C̄). Note that in this case the NBA has not only
been applied to P (X|C) but also to P (X|C̄). In other words, that the Xi are inde-
pendent when conditioned on either class. As P (X) = P (X|C)P (C)+P (X|C̄)P (C̄),
this has the implication that

PNB(X) =
NY

i=1

(P (Xi|C)P (C) + P (Xi|C̄)P (C̄)) (2.3)

which can be thought of as the NBA for P (X).
Rather than constructing P (C|X) directly, via equation (2.1), usually a score

function, S(X), that is a monotonic function of P (C|X) itself, is constructed, by
considering the odds ratio of the class C and another class, usually its complement,
C̄

S(X) = log
P (C|X)
P (C̄|X)

= log
P (C)
P (C̄)

+ log
P (X|C)
P (X|C̄)

The NBA to this score function, SNB(X), which is a monotonic function of
PNB(C|X), though not necessarily a monotonic function of P (C|X) itself, is given
by

SNB(X) = log
P (C)
P (C̄)

+
NX

i=1

log
P (Xi|C)
P (Xi|C̄)

= log
P (C)
P (C̄)

+
NX

i=1

S(Xi) (2.4)

where, once again, the NBA has been applied to the likelihood functions for both
C and C̄.

As a simple sum this form of the approximation is transparent. Another ad-
vantage of this form is that it is not neccessary to have in hand P (X) as the idea

1 Indeed, for a su�ciently large set of discriminatory features so that every combination is
unique we will have NCX = 0, 1, with the vast majority of combinations being zero.
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Naive Bayes Approximation

Total factorisation

But what about P(C|X) = P(C|X1,X2,X3,…,XN) 

                                          = N(CX1,X2,X3,…,XN)/N(X1,X2,X3,…,XN) 

S(C|X) =  ln(P(C|X)/P(C|X)) = ln(P(X|C)P(C)/P(X|C)P(C))

              = Σi ln(P(Xi|C)/P(Xi|C)) + ln(P(C)/P(C))


              = Σi S(C|Xi) + ln(P(C)/P(C))
contribution to probability to find C from presence 

of niche variable Xi . Can compare contributions from 

biotic/abiotic/topographic/… factors

Here we’re in niche space



So we can pass from Geographic 

space to Niche Space and vice versa

Bio$c		
interac$ons	

Abio$c	
Niche	
variables	

Socio-economic		
factors	

Interac$on		
Space	

Bio$c		
interac$ons	

Abio$c	
Niche	
variables	

Socio-economic		
factors	

Interac$on		
Space		

The	Data	Mining	Approach	

Geographic	space	

Geographic	space	

I 

I 

G 

G 

Perturba$on	

Perturba$on	

F(g(x,t),h(x,t),…)	

F(g’(x,t),h’(x,t),…)	

F(g,h,…)	

F(g’,h’,…)	



Now for Communities…

or	his	“enemies”,	or	“parasites”,	or	“prey”	or	“predators”	or…	

You	can	judge	a	man	by	his	“friends”	



Use Complex Inferential Networks to 
Represent Community Interactions

•  Take	nodes	to	be…	
–  Species,	other	taxonomic	or	phylogene9c		groupings,	groupings	by	

phenotypic	characteris9cs,			

•  Take	links	to	be	a	sta9s9cal	measure	of	spa9al	
(temporal)	co-occurrence		
–  P(Y|X),	epsilon(Y|X),	P(A,B|C,D),	epsilon(Z|X,Y)	
–  What	is	a	high/low	degree	of	co-occurrence?	(Choosing	a	null	

hypothesis)	
–  What	spa9al	(temporal)	resolu9on?	(When	do	things	co-occur?)		



Two Example Niches
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Model	performance	as	a	func+on	of	score	decile	

Abiotic lutzomyia 

Mammal lutzomyia 

Land cover lutzomyia 

All lutzomyia 

Abiotic lutzomyia 

Mammal lynx 

Land cover lynx 

All lynx 

Clima&c	factors	are	more	
important	for	determining	
where	Lutzomyias	aren’t		
rather	than	where	they	are	

Lutzomyias	love	mammals,	
never	met	one	they	didn’t	like	

Including	in	a	fuller,	richer		
Niche	Space	leads	to	more		
predic&ve	models	(less	false	
posi&ves/nega&ves)		

Biotic facilitation seems to be

more the norm than competition

Chains of causality



The Ecology of Leishmaniasis

All	data	before	2008	used	
All	Mexico	

What	does	this	tell	us	about	vector	control?	

20	
	

 439	

 440	

 441	

 442	



Conclusions: CAS
✤ All science is Data Science! 

✤ The difference now is the big, deep data available due to the Data Revolution 


✤ Much of this data is spatio-temporal - where “things” are and when


✤ Data associated with the relative positions of “things” in space and time has allowed us to deduce 
(Data —> Phenomenology —> Taxonomy —> Theory) the nature of the interactions between 
physical objects: the four fundamental forces


✤ These forces are universal and simple


✤ Unlike the physical world, ecologies are CAS composed of other CAS 

✤ We don’t have adequate conceptual or theoretical frameworks in which to understand CAS 


✤ The phenomenology of CAS is incredibly rich and qualitatively different from that of physical 
systems (multi-factorial from the micro to the macro, and adaptive)


✤ To describe this phenomenology you need a lot of data



Conclusions: Ecology
✤ Spatio-temporal data about organisms, relative to each other (biotic) and relative to the 

environment (abiotic), can be used to deduce the nature of the interactions between them 
and with the environment

✤ This can be done at the niche level (one to many) and at the community level (many to many)


✤ Our formalism allows for the incorporation of any data type, data format and data resolution


✤ The Niche “fitness” landscape of a taxon C can be characterised quantitatively by P(C|X) 
using spatio-temporal data mining 

✤ What are their general topological and geometrical characterisations?

✤ How rugged/smooth are they?

✤ What is the distribution of epistasis


✤ Are distributions random?

✤ Facilitation versus competition


✤ What are the right coordinates?

✤ What is the dynamics of Niche landscapes? How do they evolve?

✤ How do we determine and characterise causal chains in ecology?



Conclusions: Ecology
✤ At the community level, spatio-temporal data can be used to construct Complex Inference 

Networks (CIN) as representations of communities and ecosystems


✤ How to distinguish causality from correlation? 


✤ How to determine co-dependencies?


✤ As a proof of concept: The niches and community relations of diseases can be determined 
via CIN


✤ Identification of transmission cycles and host range 


✤ Leishmania, Chagas, Lyme, Dengue, Zika, West Nile,…


✤ Many zoonoses are multi-host, multi-vector, multi-pathogen systems.  
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δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω

Give me a place to stand on and I´ll move the earth

Give me enough data and I´ll predict anything

The Data Revolution will revolutionise our 

ability to model and understand ecology


