

Ecological Modelling Using Big, Deep Spatial Data

Chris Stephens C3-Centro de Ciencias de la Complejidad y Instituto de Ciencias Nucleares, UNAM

Seminar, Eco-Health Alliance, NY 17/05/2016

Isn't all Science Data Science? Data -> Phenomenology -> Taxonomy -> Theory

Kepler's Laws

- 1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
- 2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- 3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.

Phenomenology

Isn't all Science Data Science? Data -> Phenomenology -> Taxonomy -> Theory

Isaac Newton computed the acceleration of a planet moving according to Kepler's first and second law.

- 1 The *direction* of the acceleration is towards the Sun.
- 2 The *magnitude* of the acceleration is inversely proportional to the square of the planet's distance from the Sun (the *inverse square law*).

This implies that the Sun may be the physical cause of the acceleration of planets.

Newton defined the force acting on a planet to be the product of its mass and the acceleration. So:

- 1 Every planet is attracted towards the Sun.
- 2 The force acting on a planet is in direct proportion to the mass of the planet and in inverse proportion to the square of its distance from the Sun.

The Sun plays an unsymmetrical part, which is unjustified. So he assumed, in Newton's law of universal gravitation:

- 1 All bodies in the solar system attract one another.
- 2 The force between two bodies is in direct proportion to the product of their masses and in inverse proportion to the square of the distance between them.

As the planets have small masses compared to the Sun, the orbits conform approximately to Kepler's laws. Newton's model fits actual observations more accurately.

Science Data Science?

- Data: Brahe provided an accurate (for the time) data base with data on the positions of different celestial bodies as a function of time.
- Phenomenology: Kepler was a data miner, a data scientist. He mined Brahe's data and <u>inferred</u> regularities and constructed phenomenological models (his three laws) that embodied these regularities.
 - **Theory**: Newton used Kepler's laws to construct a theoretical, "universal" model for the gravitational interaction. He **inferred** the existence and nature of an interaction between objects.

• Where things are as a function of space and/or time allows us to infer the nature of their interactions.

- By observing the spatio-temporal behaviour of different types of inanimate "thing" we have deduced that in the physical world there are 4 interaction types and they are important at quite different scales.
 - There are only very few properties/labels of "things" that are associated with the different interactions: mass, electric charge, weak isospin, colour
 - These interactions DO NOT change!

The world as a machine

How do we model machines?

How do we model machines?

$$m\frac{d^2x}{dt^2} = F(t).$$

How do we model machines?

$$m\frac{d^2x}{dt^2} = F(t).$$

With differential equations

 $m\frac{d^2x}{dt^2} = F(t).$

With differential equations

 $m\frac{d^2x}{dt^2} = F(t).$

 $m\frac{d^2x}{dt^2} = F(t).$

We all obey the law!

 $m\frac{d^2x}{dt^2} = F(t).$

 $m\frac{d^2x}{dt^2} = F(t).$

In fact...

 $m\frac{d^2x}{dt^2} = F(t).$

we are slaves of the law

The difference between complex and simple systems is the difference between "being" and "doing"

Mechanistic

The *evolution* of function is the revolution that allowed systems to escape the tyrrany of the laws of physics. **Complexity is a consequence** of that revolution.

Adaptive

Universality We're all equal under the law

Universality We're all equal under the law

But in physics and chemistry...

there's really not a lot to say

once you've seen one perfect gas you've seen them all!

At all times and in all places

In general, you don't need that much data

There's a lot you can say!

Imagine what you can say about a city

Imagine what you can say about a city

Imagine what you can say about a city

versus

Imagine what you can say about a city

versus

Imagine what you can say about a city

versus a

a crystal as big as a city!

Imagine what you can say about a city

versus

a crystal as big as a city!

Multifactoriality

So, what's different now?

So, what's different now?

There's been a data revolution...

So, what's different now?

There's been a data revolution... But just what's revolutionary?

Data types?

Data types?

2

Electromagnetic Chemical Acoustic

1

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Yes and No

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Yes and No

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Yes and No

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Data connectivity?

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Data connectivity?

Electromagnetic Chemical Acoustic

Data communication speed?

Data search capacity?

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Yes

and

No

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Yes

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data storage and processing?

Yes

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data storage and processing?

Yes

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain

10-100 Terabytes

Data connectivity?

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Data communication speed?

Data search capacity?

Data storage and processing?

10-100 Terabytes

Human brain

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data storage and processing?

10-100 Terabytes

All the books in the world 30-50 Terabytes

Yes

Data connectivity?

Yes

and

No

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes All the books in the world 30-50 Terabytes

Data connectivity?

Yes

Electromagnetic Chemical Acoustic

Data generation?

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes All the books in the world 30-50 Terabytes

In electronic form 1 zettabyte

Data connectivity?

Yes

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Yes and No

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes

Yes

world 30-50 Terabytes

All the books in the

In electronic form 1 zettabyte

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Yes and No

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes

Yes

All the books in the

In electronic form 1 zettabyte

Data analysis?

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Yes and No

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes

Yes

All the books in the

In electronic form 1 zettabyte

Data analysis?

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Yes and No

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes All the books in the world 30-50 Terabytes

Yes

In electronic form 1 zettabyte

Data analysis?

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Yes and No

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes

Yes

All the books in the world 30-50 Terabytes

In electronic form 1 zettabyte

Data analysis?

Automated Data Analysis Using Excel

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Yes and No

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes

Yes

All the books in the world 30-50 Terabytes

In electronic form 1 zettabyte

Data analysis?

Brian D. Bissett

Electromagnetic Chemical Acoustic

Data generation?

Yes

Data connectivity?

Yes and No

Data communication speed?

Data search capacity?

Data storage and processing?

Human brain 10-100 Terabytes

Yes

All the books in the world 30-50 Terabytes

In electronic form 1 zettabyte

Data analysis?

Brian D. Bissett

Yes and No

The data revolution and the access to big, deep data is revolutionising our ability to study the immensely rich phenomenology of complex systems and construct more appropriate taxonomies

Harrystee Oter Rodal/Hyanes. Apprintal and particular hear Rolates vol. 2011, page 101 171 April 2000, 0 1000, he added

Ecology is the scientific analysis and study of <u>interactions</u> among organisms and their environment

Harrystee Oter Rodal/Hyanes. Apprintal and particular hear Rolates vol. 2011, page 101 171 April 2000, 0 1000, he added

Type of interaction	Sign	Effects
mutualism	+/+	both species benefit from interaction
commensalism	+/0	one species benefits, one unaffected
competition	-/-	each species affected negatively
predation, parasitism, herbivory	+/-	one species benefits, one is disadvantaged

Harrystee Oter Rodal/Hyanes. Apprintal and particular hear Rolates vol. 2011, page 101 171 April 2000, 0 1000, he added

An Ecology is a Complex Adaptive System

Harrystee Oter Rodal/Hyanes. Apprintal and particular hear Rolates vol. 2011, page 101 171 April 2000, 0 1000, he added

Multifactorial with changing interactions

Importancia médica

T. Infestans

T. barberi

T. longipenis

-

T. recurva

T. pallidipennis

Culex quinquefasciatus

Importancia médica

T. Infestans

T. barberi

T. longipenis

T. recerta

T. pallidipennis

Г. почеты:

Culex quinquefasciatus

T. Infestans

T. barberi

T. longipenis

T. pallidipennis

T. neutomac

Culex quinquefasciatus

T. longipenis

T. neutomac

T. longipenis

Т. геситта

T. neutomac

Niche versus Community

While different species may share or live in a similar habitat, ecological niche is their unique way of living within it.

Hutchinson: "the set of biotic and abiotic conditions in which a species is able to persist and maintain stable population sizes."

serveir areads

Community ecology examines how interactions among species and their environment affect the abundance, distribution and diversity of species within communities.

"Keplerian" Ecological models

What do we want to predict? C = (C1, C2, C3, ..., CN)the presence, or abundance, or,... of one or more populations or taxa

What affects it? The "niche" **X** = (X1, X2, X3, ..., XM)

A large part of the complexity is in the multi-factoriality of both C and X. Adaptation is inherent in the fact that P(C | X)can change in time.

 $\mathbf{X} = X(sd) + X(se) + X(n) + X(ev) + X(g) + X(af) + X(hm) + X(i) + X(sp) + \dots$

Macro-Climactic factors

Micro-Climatic factors

Hydrography

Prey species

Human activity

Behavioural characteristics

Phenotypic characteristics **Competitor species**

Predator species

Problems of co-dependence and causality

The Niche Landscape

Are there generic topologies for Niche or Ecosystemic landscapes?

Are there generic topologies for Niche or Ecosystemic landscapes?

Can they be multi-modal?

Are there generic topologies for Niche or Ecosystemic landscapes?

Can they be multi-modal?

Are they rugged or smooth?

Are there generic topologies for Niche or Ecosystemic landscapes?

Can they be multi-modal?

Are they rugged or smooth?

What are the "right" coordinates?

Are there generic topologies for Niche or Ecosystemic landscapes?

Can they be multi-modal?

Are they rugged or smooth?

What are the "right" coordinates?

What are the patterns of epistasis?

And the data? Where are the "Brahes"? There's lots of them!

Normally data mining takes place in a "categorical" space (the equivalent in ecology is a niche space). However, most ecological data is spatio-temporal at multiple scales. Spatial data mining is much less developed than standard data mining.

- Collection data
- Ecological niche data
- Ecological niche model data
- Socio-economic data
- Socio-demographic data
- Phenotypic data
- Vegetable and crop cover
- Geographical data
- Medical and public health data...

The data are represented in space and time – spatial data mining

Problems with spatial data:

Different sources

Different location, data base, access,...

Different data types

categorical, metric, continuous, discrete,..

Different spatial resolution

Explicit – e.g., pixel by pixel in environmental layers Implicit – 30,000,000 data points versus 30 "Quality" (e.g. Phenotypic characteristic) versus "quantity" Abiotic versus biotic

A Democracy of the Data: To infer interactions from where "things" are

Choose a spatial resolution: give everyone one vote there. The "Senate" versus the "Congress" approach!

Cuadrante	Sigmodon hispidus	Dipetalogaser maxima	Casos Chagas	Precipitación anual	Temperatura promedio	GARP Triatoma maximus	GARP Diptaloster maxima	Perfil agricola
A1	1	3	1	23	18.6	1	1	4
A2	0	1	0	23	18.6	1	1	4
A3	0	2	0	23.7	18.7	1	1	1
AA	0	4	0	23.7	18.7	1	1	3
A5	0	2	1	23.7	18.7	1	1	3
A6	2	5	2	23.7	18.7	1	1	2
A7	0	1	0	23.3	18.4	1	1	5
A8	0	2	0	22.8	18.8	1	1	3
▲ A9	1	3	1	22.8	18.8	1	1	1
A10	0	1	0	22.8	18.8	0	1	1
A11	0	0	0	22.8	18.8	0	1	1
A12	0	0	0	22.8	18.8	0	1	2
A13	0	0	0	22.8	18.8	0	0	4
A14	0	0	0	22.8	18.8	0	0	3
A15	0	2	0	22.8	18.8	0	1	4
A16	0	1	0	22.8	18.8	0	1	2
A17	0	0	0	22.8	18.8	0	1	1
A18	0	0	0	22.8	18.8	0	0	1

Now we can make statistical inferences

In standard data mining, for example: P(death | age) = N(death, age)/N(age); P(death | diabetes); P(death | age, diabetes); to **infer** that age is a risk factor for death, as is diabetes. Here, we count individuals who have different traits. There is a preferred statistical unit - the individual within which we can look for coincidences/co-occurrences. In spatial data mining this is not the case.

We must define coincidences / co-occurrences using an appropriate **uniform** spatio-temporal scale.

Dependence of species a on niche variable b

And we can pass to Niche Space: Or can we?

The Technical Part For niche construction

P(C | X) = P(C | X1, X2, X3, ..., XN)But... N(CX1, X2, X3, ..., XN) = 0, 1= N(CX1, X2, X3, ..., XN)/N(X1, X2, X3, ..., XN) the "curse of dimensionality"

Use Bayes' theorem $P(\mathbf{C} \mid \mathbf{X}) = P(\mathbf{X} \mid \mathbf{C})P(\mathbf{C}) / P(\mathbf{X})$ and assume

 $N_{\boldsymbol{\xi}(i)}^{C}$

 $\alpha = 1$

Naive Bayes Approximation Total factorisation

Generalised Bayes Approximation Takes into account correlations

$$P_{GB}(\mathbf{X}|\bar{C}) = P(\xi^{(j)}|\bar{C}) = \prod_{\alpha=1}^{N_{\xi^{(j)}}} P(\xi^{\alpha}|\bar{C})$$

 $P_{GB}(\mathbf{X}|C) = P(\xi^{(i)}|C) = \prod P(\xi^{\alpha}|C)$

 $P_{NB}(\mathbf{X}|C) = \prod_{i=1}^{N} P(X_i|C)$

Now for Communities...

You can judge a man by his "friends"

or his "enemies", or "parasites", or "prey" or "predators" or ...

Use Complex Inferential Networks to Represent Community Interactions

- Take nodes to be...
 - Species, other taxonomic or phylogenetic groupings, groupings by phenotypic characteristics,
- Take links to be a statistical measure of spatial (temporal) co-occurrence
 - P(Y|X), epsilon(Y|X), P(A,B|C,D), epsilon(Z|X,Y)
 - What is a high/low degree of co-occurrence? (Choosing a null hypothesis)
 - What spatial (temporal) resolution? (When do things co-occur?)

and some results...

Two Example Niches: Lutzomyia

	TOP DECILE			BOTTOM DECILE					
Opt	timal niche conditions for Lu	ıtzomyia		Suboptimal niche conditions for Lutzomyia					
ABIOTIC VARIABLES	RANGE	Epsilon	Score contribution	ABIOTIC VARIABLES	RANGE	Epsilon	Score contribut		
BIO17	88-219	8.960	5.013	BIO12	42-507	-5.604	-2.279		
BIO1	23.3-26.4	8.938	1.006	BIO16	18-218	-5.001	-2.328		
BIO11	22.2-25.3	8.873	2.322	BIO18	1-249	-3.839	-3.799		
BIO14	26-63	8.782	4.916	BIO6	3.1-3.4	-3.761	-2.931		
BIO4	25.35-33.09	7.543	2.152	BIO7	26.3-28.4	-3.544	-8.853		
BIO6	13.4-16.6	7.524	3.293	BIO2	16.5-18.4	-3.535	-2.997		
BIO13	392-774	7.107	12.913	BIO11	2.9-12.5	-3.271	-4.482		
BIO7	28.5-30.6	7.012	3.803	BIO4	3310-7184	-2.971	-9.551		
BIO16	1019-2019	6.925	12.175	BIO19	192-383	-2.940	-0.448		
BIO19	192-383	6.618	4.157	BIO10	28.9-32.3	-2.669	-0.916		
BIO12	1906-3302	6.314	8.701	BIO1	10.3-19.9	-2.189	-1.033		
BIO2	9.8-10.8	6.130	4.458	BIO3	3.7-5.5	-2.130	-3.576		
BIO18	623-746	5.748	1.260	BIO8	28.4-31.7	-1.964	-0.731		
RESE	RVOIRS			RESER	RVOIRS				
Reithrodontomys gracilis	1	8.892	2.640	Sigmodon hispidus		6.946	1.244		
Heteromys gaumeri		8.800	2.234						
Heteromys desmarestial	nus	8.716	2.381						
Ototylomys phyllotis		7.559	2.028						
Peromyscus yucatanicus	5	7.249	2.116						
Sigmodon hispidus		6.946	1.244						
Didelphis marsupialis		5.774	1.662						
Oryzomys melanotis		3.494	1.387						
Marmosa mexicana		2.773	1.541						
LAND) COVER			LAND	COVER				
Cloud forest		6.642	1.408	Subtropical scrub		-1.675	-1.527		
Tropical evergreen forest		6.603	4.476	Subtropical scrub with se	condary vegetation	-1.849	-1.658		
Cloud forest with second	lary vegetation	6.028	1.459	Xeric scrub with seconda	ary vegetation	-2.092	-3.640		
Tropical evergreen fores	t with secondary vegetation	6.007	4.344	Xeric scrub		-2.924	-4.044		
Agriculture areas		5.966	1.736	Mesquite		-3.337	-1.714		
Human settlement		4.947	0.577	Grassland		-3.734	-1.874		
Deciduous tropical fores	t with secondary vegetation	4.081	1.013	Mangroves		-4.063	-2.000		

Two Example Niches: Lynx Rufus

Coniferous forest with secondary

Quercus forest with secondary ve-

vegetation

getation

3.631

3.457

0.591

0.468

T	OP DECILE			BOTTOM DE	ECILE	- 1 - 1 - N	PREYS	1910124		PREYS	132231	1.2.1
Optimal niche		for L. rufu	S	Suboptimal niche condi		rufus	- Spermophilus variegatus	13.824	1.883	Sylvilagus floridanus	11.004	1.439
ABIOTIC VARIABLES	RANGE	Encilon	Score	ABIOTIC VARIABLES	Epsilor	Score	Sylvilogue floridanue	11.004	1.439	Neotoma mexicana	8.034	1.378
ADIOTIC VARIABLES	RANGE	Epsilon	contribution	RANGE	Epsiloi	contribution	- Neotoma albigula	9.143	1.604	Didelphis virginiana	5.553	1.054
BIO1	-2.7 -	5.488	6.109	BIO9 19.8	4.177	-0.821		8.846	1.776			
16.7	0.4	F 007	0.005	29.7	0.000	F 070	Microtus mexicanus	8.636	1.565	Nasua narica	5.270	1.147
BIO6 3.4	-9.4 -	5.327	3.005	BIO11 19 28.6	3.930	-5.379	Dipodomys ordii			Odocoileus virginianus	4.457	1.589
BIO8	2.2 -	4.797	1.096	BIO6 6.8	3.578	-1.902	Dipodomys merriami	8.618	1.306			
14.7				19.9			Neotoma mexicana	8.034	1.378			
BIO4	25.35-	4.704	1.393	BIO1 23.3	3.452	-3.128	Sigmodon leucotis	6.275	1.982			
48.95 BIO9	-3.5 -	4.687	5.758	29.7 BIO16 619 -	-3.060	-3.268	Sylvilagus audubonii	5.972	1.556			
16.4	-3.5 -	4.007	5.756	1618	-3.000	-3.200	Didelphis virginiana	5.553	1.054			
BIO11	-3.6 -	4.632	7.050	BIO7 11.5	2.853	-1.656	Cratogeomys merriami	5.385	2.031			
16.5				21.4			Nasua narica	5.270	1.147			
BIO16 418	219 –	4.602	0.524	BIO17 8 219	82.782	-1.091	Dipodomys deserti	5.057	2.059			
BIO5	7.7 -	4.330	1.777	BIO2 7.3	2.594	-0.954	Dipodomys nelsoni	4.972	1.453			
30.5				11.9			Odocoileus virginianus	4.457	1.589			
BIO10	-2.7	4.266	2.33	BIO13 238	2.59	-3.996	Romerolagus diazi	4.427	4.362			
- 22				620 BIO12 974	2.512	-1.413	Dipodomys gravipes	4.296	2.465			
				3302	2.512	-1.415	Dipodomys spectabilis	4.039	1.366			
				BIO14	-2.253	-4.666	Neotomodon alstoni	3.860	1.589			
				26-63		1 000		3.700	2.128			
				BIO18 374 870	42.219	-1.068	Ammospermophilus harrisii	3.469	1.248			
				LAND COVER			_ Dipodomys agilis					
LAND COVE Grassland	R			Low forest evergreen with secon	nd .		_ Spermophilus tereticaudus	2.332	1.366			
Glassiallu		4.883	0.629	ary vegetation	-2.088	-0.430	Dipodomys simulans	1.875	1.877			
Plantation forest		4.738	1.934	Savannah	-2.202	-1.907	Mustela frenata	1.810	0.928			
Xeric scrub with second	ary vegeta-	4.283	1.094	Agriculture areas			Sylvilagus cunicularius	1.743	1.030			
tion		4.283	1.094		-2.245	-0.395	POTENTIAL COMPETITORS	(England		POTENTIAL COMPETITORS		
Oyamel forest		4.274	1.256	Cloud forest with secondary veg	et2.439	-2.061	Leopardus pardalis	3.373	1.147	Leopardus pardalis	3.373	1.147
High mountain meadow		4.042	1.812	ation Mangrove	-2.506	-1.191	Panthera onca	2.559	0.928	Panthera onca	2.559	0.928
Agriculture areas			3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Tropical evergreen forest with se			Leopardus wiedii	1.597	0.735	Leopardus wiedii	1.597	0.735
Agriculture areas		3.903	0.745	ondary vegetation	-2.540	-3.532	Herpailurus yagouaroundi	1.138	0.524	Herpailurus yagouaroundi	1.138	0.524
Xeric scrub		3.955	0.678	Tropical evergreen forest	-2.566	-3.575					1.130	0.024
Coniferous forest		3.878	0.565	Deciduous tropical forest	-2.924							
Quercus forest		3.858	0.475	Deciduous tropical forest with se								
Human establishment		3.661	0.356	ondary vegetation								
		0.001	0.000									

Two Example Niches

The Ecology of Leishmaniasis

Centurio senex 6.01 1 0 1 0 4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Artibeus lituratus 5.84 38 3 41 7.3 -1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.21 2 0 2 0 -2 Artibeus vatsoni 5.13 2 0 2 0 -2 Choeroniscus godmani 5.05 10 3 13 23.1 -7	
Peronyscus mexicanus 8.79 115 6 121 5 2 Heteromys desmarestianus* 8.72 30 0 30 0 -2- Molossus rufus 8.63 1 0 1 0 -42 Glossophaga soricina 8.57 19 7 26 26.9 -3- Carollia perspicillata 8.5 8 0 8 0 -11 Pteronotus parnellii 8.16 4 0 4 0 -18: Desmodus rotundus 8.15 13 1 14 7.1 -6- Sturnira lilium 8.03 56 7 63 11.1 1 Artibeus phaeotis 8.01 35 1 36 2.8 -1- Oryzomys couesi 7.73 2 0 2 0 -24 Otrylomys phyllotis* 7.25 3 0 3 0 -22 -24 Didelphis inginiana 7.12 3<	20
Heteromys desmarestianus* 8.72 30 0 30 0 -2- Molossus rufus 8.63 1 0 1 0 -42 Glossophaga soricina 8.57 19 7 26 26.9 -3- Carollia perspicillata 8.57 8 0 8 0 -11 Pteronotus parnellii 8.16 4 0 4 0 -18 Desmodus rotundus 8.15 13 1 14 7.1 -6- Sturnira lilium 8.03 56 7 63 11.1 1- Artibeus phaeotis 8.01 35 1 36 2.8 -1- Oryzomys couesi 7.73 2 0 2 0 -2- Ototylomys phylotis* 7.28 36 4 40 10 -11 Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 <td></td>	
Molossus rufus 8.63 1010 42 Glossophaga soricina 8.57 19726 26.9 3 Carollia perspicillata 8.57 8080 -11 Pteronotus parnellii 8.16 4040 -18 Desmodus rotundus 8.15 131 14 7.1 -6 Sturnira lilum 8.03 56 7 63 11.1 1 Artibeus phaeotis 8.01 35 1 36 2.8 -1 Oryzomys couesi 7.73 2020 -28 Ototylomys phyllotis* 7.56 91 10 10 -9 Sigmodon hispidus* 7.28 36 4 40 10 -1 Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8 Philander opossum 6.25 6 1 7 14.3 -1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Artibeus duroogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.21 2 <	
Glossophaga soricina 8.57 19 7 26 26.9 -3- Carollia perspicillata 8.5 8 0 8 0 -11 Pteronotus parnellii 8.16 4 0 4 0 -18 Desmodus rotundus 8.15 13 1 14 7.1 -6- Sturnira lilium 8.03 56 7 63 11.1 1- Artibeus phaeotis 8.01 35 1 36 2.8 -1- Oryzomys couesi 7.73 2 0 2 0 -28 Ototylomys phyllotis* 7.56 9 1 10 10 -9- Sigmodon hispidus* 7.28 36 4 40 10 -1- Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 4 Artibeus jamaicensis 5.98 81 <td></td>	
Pteronus parnellii 8.16 4 0 4 0 -18 Desmodus rotundus 8.15 13 1 14 7.1 -6- Sturnira lilium 8.03 56 7 63 11.1 1- Artibeus phaeotis 8.01 35 1 36 2.8 -1- Oryzomys couesi 7.73 2 0 2 0 -28 Ototylomys phyllotis* 7.56 9 1 10 10 -9- Sigmodon hispidus* 7.28 36 4 40 10 -1- Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1- Centurio senex 6.01 1 0	16
Desmodus rotundus 8.15 13 1 14 7.1 -6- Sturnira lilium 8.03 56 7 63 11.1 1 Artibeus phaeotis 8.01 35 1 36 2.8 -1- Oryzomys couesi 7.73 2 0 2 0 -28 Ototylomys phyllotis* 7.56 9 1 10 10 -9- Sigmodon hispidus* 7.28 36 4 40 10 -1- Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 -2 Myotis keaysi 5.61 2 0 <td< td=""><td>- 24</td></td<>	- 24
Sturnira lilium 8.03 56 7 63 11.1 1- Artibeus phaeotis 8.01 35 1 36 2.8 -1- Oryzomys couesi 7.73 2 0 2 0 -28 Ototylomys phyllotis* 7.56 9 1 10 10 -9- Sigmodon hispidus* 7.28 36 4 40 10 -1- Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 -4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Myotis keaysi 5.61 2 0 <	
Artibeus phaeotis 8.01 35 1 36 2.8 -1- Oryzomys couesi 7.73 2 0 2 0 -28 Otoylomys phyllotis* 7.56 9 1 10 10 -9- Sigmodon hispidus* 7.28 36 4 40 10 -1- Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 -4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0	
Oryzomys couesi 7.73 2 0 2 0 -28 Ototylomys phyllotis* 7.56 9 1 10 10 -9- Sigmodon hispidus* 7.28 36 4 40 10 -1- Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 -4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0	
Ototylomys phyllotis* 7.56 9 1 10 10 -9- Sigmodon hispidus* 7.28 36 4 40 10 -1- Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 -4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Artibeus lituratus 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8	
Peromyscus yucatanicus* 7.25 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis virginiana 7.12 3 0 1 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8 Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 -4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Artibeus lituratus 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8	22
Didelphis virginiana 7.12 3 0 3 0 -22 Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 -4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Artibeus lituratus 5.84 38 3 41 7.3 -1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciturus aureogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.13 2 0 2 0 -2 Choeroniscus godmani 5.05 10 3 13 </td <td></td>	
Didelphis marsupialis 6.44 11 0 11 0 -8- Philander opossum 6.25 6 1 7 14.3 -1 Centurio senex 6.01 1 0 1 0 44 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Artibeus lituratus 5.84 38 3 41 7.3 -1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.21 2 0 2 0 -2 Artibeus watsoni 5.13 2 0 2 0 -2 Image of the optimized optimized optimized optimized optimized optimized optimized optimized optimized optimi	
Philander opossum 6.25 6 1 7 14.3 1.1 Centurio senex 6.01 1 0 1 0 4.4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Artibeus lituratus 5.84 38 3 41 7.3 -1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.21 2 0 2 0 -2 Artibeus watsoni 5.13 2 0 2 0 -2 Italiounys godmani 5.05 10 3 13 23.1 -7	
Centurio senex 6.01 1 0 1 0 4 Artibeus jamaicensis 5.98 81 5 86 5.8 1 Artibeus lituratus 5.84 38 3 41 7.3 -1 Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.21 2 0 2 0 -2 Artibeus watsoni 5.13 2 0 2 0 -2 Choeroniscus godmani 5.05 10 3 13 23.1 -7	2 - 2
Artibeus lituratus5.84383417.3-1Myotis keaysi5.612020-2Chiroderma villosum5.565050-1Saccopteryx bilineata5.31010-4Sciurus aureogaster5.23718797.31Baiomys musculus5.212020-2Artibeus watsoni5.132020-2Choeroniscus godmani5.051031323.1-7	2 - 50
Myotis keaysi 5.61 2 0 2 0 -2 Chiroderma villosum 5.56 5 0 5 0 -1 Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.21 2 0 2 0 -2 Artibeus watsoni 5.13 2 0 2 0 -2 Choeroniscus godmani 5.05 10 3 13 23.1 -7	- 12
Chiroderma villosum5.565050-1Saccopteryx bilineata5.31010-4Sciurus aureogaster5.23718797.31Baiomys musculus5.212020-2Artibeus watsoni5.132020-2Choeroniscus godmani5.051031323.1-7	- 14
Saccopteryx bilineata 5.3 1 0 1 0 -4 Sciurus aureogaster 5.23 71 8 79 7.3 1 Baiomys musculus 5.21 2 0 2 0 -2 Artibeus watsoni 5.13 2 0 2 0 -2 Choeroniscus godmani 5.05 10 3 13 23.1 -7	8 - 4
Sciurus aureogaster5.23718797.31Baiomys musculus5.212020-2Artibeus watsoni5.132020-2Choeroniscus godmani5.051031323.1-7	5 - 29
Baiomys musculus 5.21 2 0 2 0 -2 Artibeus watsoni 5.13 2 0 2 0 -2 Choeroniscus godmani 5.05 10 3 13 23.1 -7	2 - 50
Artibeus watsoni 5.13 2 0 2 0 -2 Choeroniscus godmani 5.05 10 3 13 23.1 -7	- 12 8 - 4
Choeroniscus godmani 5.05 10 3 13 23.1 -7	8 - 4 8 - 4
	7 - 20
	8 - 3
Reithrodontomys mexicanus 4.91 1 0 1 0 -4	2 - 50
	4 - 17
	2 - 50
	3 - 22 3 - 16
	8 - 10 8 - 17
	2 - 50
	- 14
Glossophaga commissarisi 3.49 2 6 8 75 -1	1 - 24
	2 - 50
	2 - 50
	2 - 35 8 - 3
	2 - 50
	2 - 50
<i>Myotis velifer</i> 2.58 3 0 3 0 -1	8 - 3
	5 - 19
	8 - 4
	8 - 43 4 - 18
	5 - 29
	2 - 50
	2 - 50
Sorex saussurei 1.29 3 0 3 0 -2	2 - 3
	0 - 23
	1 - 24
	8 - 4: 2 - 50
	2 - 30 8 - 41
	2 - 50
Peromyscus zarhynchus -0.46 2 0 2 0 -2	8 - 4
	8 - 3
	8 - 4
	5 - 19 7 - 20
	- 20 2 - 35
	- 19
Peromyscus maniculatus -1.37 58 2 60 3.3 0	- 13
	2 - 56
	2 - 50
<i>Dipodomys merriami</i> -2.01 1 0 1 0 -42	2 - 56

- Only about 50 (2.5%) of mammals on the American continent have been identified as hosts of Leishmania
- In Mexico only 8 out of 419 (2.1%) had been identified as hosts
- We collected 922 individuals from 70 species
- Predicted and confirmed 21 new species of mammal as carriers of Leishmania in Mexico
- 13 of them are bats, identified for the first time in Mexico
- Squirrels identified as carriers
- 33% of collected species were confirmed as hosts
- Overall infection rate was 6.7%
- No species could be rejected as a host at this infection rate at the 95% confidence level
- Changes the picture for control of Leishmania totally;
- Leishmania and Lutzomyias are eclectic in their host source.
- Linnean classification is NOT ecologically relevant

Baiomys taylori Chaetodipus nelsoni Neotoma micropus Peromyscus maniculatus

10.

-1.16

-1.24 -1.27

-1.37

-1.41 -1.52 -2.01

Prediction at the Ecosystem and the Ecosystem an

	Mammals	Encilon	Conf.
1	Eira barbara	Epsilon 10.1683	Com.
-	Rhogeessa aeneus	9.3649	
	Artibeus intermedius		
	Reithrodontomys gracilis	9.1628	Yes
	Carollia sowelli	8.8921 8.8303	res
	Heteromys gaumeri	8.8000	Yes
			res
	Peromyscus mexicanus	8.7859	Yes
	Heteromys desmarestianu Molossus rufus	8.7164 8.6277	res
		8.5713	
	Glossophaga soricina	8.5030	
	Carollia perspicillata		
	Orthogeomys hispidus	8.3468	-
	Pteronotus parnellii	8.1632	
	Desmodus rotundus Dasyprocta mexicana	8.1519 8.1128	
	Sturnira lilium	8.0290	
	Dermanura phaeotis	8.0055	
10	Dasyprocta punctata Oryzomys couesi	7.9678	
	Potos flavus		
		7.7246	
	Conepatus semistriatus	7.6879	Vee
22	Ototylomys phyllotis	7.5587	Yes
23	Ateles geoffroyi	7.4787	-
24	Cryptotis magna	7.4207	
	Cuniculus paca	7.3220	
	Lampronycteris brachyotis Sigmodon hispidus	7.2852 7.2805	Vee
			Yes
	Peromyscus yucatanicus	7.2486	Yes
	Oryzomys chapmani	7.1242	-
21	Didelphis virginiana Peromyscus melanocarpu	7.0260	
22	Microtus umbrosus	6.9630	
	Thyroptera tricolor		-
	Nasua narica	6.9630 6.8953	
	Megadontomys cryophilus Oryzomys alfaroi	6.6830 6.6816	
	Sorex veraepacis	6.6797	
	Carollia subrufa	6.6316	-
	Peromyscus aztecus	6.6173	
40	Didelphis marsupialis	6.4390	Yes
	Sciurus yucatanensis	6.3865	res
	Philander opossum		
	Habromys ixtlani	6.2546 6.1120	
	Microtus waterhousii	6.1120	
	Pteronotus rubiginosus		
		6.1120	
46	Reithrodontomys microdor	6.0967	
		6.0268	
	Centurio senex	6.0076	_
	Artibeus jamaicensis	5.9786	
50	Glossophaga morenoi	5.8847	

			_
	Mammals	Epsilon	Conf
	Molossus sinaloae	5.8518	
52	Artibeus lituratus	5.8422	
	Mormoops megalophylla	5.8374	
54	Habromys lepturus	5.7848	
55	Myotis keaysi	5.6148	
56	Chiroderma villosum	5.5562	
57	Tamandua mexicana	5.4845	
58	Tylomys nudicaudus	5.4510	
	Saccopteryx bilineata	5.2984	
	Macrotus mexicanus	5.2472	- 13.83
61	Sciurus aureogaster	5.2267	
	Baiomys musculus	5.2092	
	Rhogeessa tumida	5.1950	
	Sciurus deppei	5.1414	
	Dermanura watsoni	5.1338	
	Otonyctomys hatti	5.1338	
	Orthogeomys grandis	5.0556	5.10
	Alouatta palliata	5.0457	
	Choeroniscus godmani	5.0457	
	Peropteryx macrotis	5.0457	
	Pteronotus personatus	5.0266	
	Lontra longicaudis	4.9330	-
	Reithrodontomys mexicanu	4.9120	
	Oryzomys rostratus	4.8681	
	Mimon cozumelae	4.8327	
	Pteronotus davyi	4.7943	
	Herpailurus yagouaroundi	4.7100	
	Glossophaga leachii	4.6849	
	Rhogeessa gracilis	4.6317	
	Sylvilagus brasiliensis	4.6317	
	Hodomys alleni	4.5155	
	Leopardus wiedii	4.4420	
	Peromyscus simulatus	4.4195	
	Sigmodon alleni	4.3707	
	Bassariscus sumichrasti	4.3110	-
	Oryzomys fulvescens	4.3110	1.1
	Diphylla ecaudata	4.3013	
	Oryzomys melanotis	4.2907	Yes
	Micronycteris microtis	4.2338	.00
	Mazama americana	4.2274	
	Microtus oaxacensis	4.2061	
	Rheomys thomasi	4.2061	
	Oryzomys saturatior	4.2061	
	Myotis elegans	4.2024	1.10
	Oligoryzomys fulvescens	4.1984	1.5
	Natalus stramineus	4.0626	
	Balantiopteryx io	4.0620	
	Nyctinomops laticaudatus	4.0522	
	Tlacuatzin canescens	4.0522	
	Odocoileus virginianus	3.9265	
100	Ouocolleus virginianus	3.9205	

	Mammals	Epsilon	Conf.
101	Balantiopteryx plicata	3.8590	
	Peromyscus leucopus	3.7994	
103	Sturnina ludovici	3.7888	
	Enchisthenes hartii	3.6929	
	Vampyrodes caraccioli	3.6929	
	Eptesicus furinalis	3.6453	
	Liomys pictus	3.6107	
	Glossophaga commissaris	3.4861	
	Lonchorhina aurita	3.4781	
	Phyllostomus discolor	3.4781	
	Peromyscus gymnotis	3.4516	
	Anoura geoffroyi	3.4201	
	Platyrrhinus helleri	3.3586	
	Eumops bonariensis	3.3398	
	Sciurus variegatoides	3.3398	
	Uroderma bilobatum	3.3373	
	Lasiurus intermedius	3.2197	
	Lasiurus ega	3.1739	12.4
	Peromyscus megalops	3.1410	
	Eumops glaucinus	3.0564	
	Urocyon cinereoargenteus		
	Procyon lotor	2.9502	-
	Hylonycteris underwoodi	2.9343	
	Rhynchonycteris naso	2.8580	-
	Eptesicus brasiliensis	2.8106	
	Myotis albescens	2.8106	
	Lophostoma evotis	2.8106	
	Tapirus bairdii	2.8106	
129	Vampyrum spectrum	2.8106	
	Marmosa mexicana	2.7731	Yes
	Peromyscus furvus	2.7731	100
	Myotis velifera	2.5757	1.0
	Spilogale putorius	2.5411	-
	Microtus mexicanus	2.5268	
	Dasypus novemcinctus	2.4725	
	Myotis nigricans	2.4704	
137	Lophostoma brasiliense	2.4407	
	Diclidurus albus	2.4407	
	Sciurus niger	2.4407	
	Leptonycteris curasoae	2.4268	
	Nyctomys sumichrasti	2.4026	
	Sigmodon mascotensis	2.3815	
	Alouatta pigra	2.3374	
	Peromyscus melanophrys	2.2204	
	Dermanura tolteca	2.1920	
	Trachops cirrhosus	2.1663	
	Bauerus dubiaquercus	2.1612	1 3 3 3
	Spilogale pygmaea	2.1612	
	Leptonycteris nivalis	2.1402	
	Sylvilagus floridanus	2.1402	
150	oyivilagus ilonuarius	2.1002	

Biotic facilitation seems to be the norm. Species are not distributed randomly

The Ecology of Leishmaniasis

What does this tell us about vector control?

The Ecology of Chagas

The Ecology of Chagas

CONFIRMED MAMMAL	Q	ε2
Baiomys musculus ^{a,b,c,d}	4	12.63
Liomys irroratus ^{a,b,c,d,e}	4	11.20
Artibeus jamaicensis ^{a,b}	4	10.57
Glossophaga soricina ^a	4	10.02
Desmodus rotundus ^b	4	9.91
Peromyscus mexicanus ^f	4	9.76
Didelphis virginiana ^{b,e,f,g}	4	9.76
Leptonycteris yerbabuenae (curasoae) ^b	4	8.91
Sturnira lilium ^{a,b}	4	8.64
Orthogeomys hispidus ^h	4	7.75
Pteronotus parnellii ^{a,b}	4	7.60
Reithrodontomys fulvescens ⁱ	4	7.52
Sigmodon hispidus ^{c,d,j}	4	7.01
Didelphis marsupialis ^{e,h,j}	4	6.60
Carollia perspicillata ⁱ	4	6.59
Nasua narica ^k	4	6.45
Peromyscus leucopus ^h	4	6.36
Sigmodon mascotensis ^e	4	6.33
Tylomys nudicaudus ⁱ	3	6.07
Choeronycteris mexicana ^a	3	6.06
Peromyscus melanophrys ^b	3	5.75
Philander opossum ^{e,j}	3	5.74
Mephitis macroura ^e	3	5.59
Peromyscus levipes ^{c,d}	3	5.26
Dasypus novemcinctus ^{i,j}	3	4.82
Procyon lotor ^{i,k}	3	4.26
Hodomys alleni ^t	3	3.74
Sylvilagus floridanus ^h	2	3.50
Urocyon cinereoargenteus ^h	2	3.42
Heteromys desmarestianus ^f	2	3.21
Neotoma mexicana ^{a,c}	1	2.64
Dasyprocta punctata ^h	-	NS
Heteromys gaumeri ^h	-	NS
Lynx rufus ⁱ	-	NS
Neotoma micropus ⁱ	-	NS
Otospermophilus (Spermophilus) variegatus ^b	-	NS
Ototylomys phyllotis ^{h.j}	-	NS
Peromyscus yucatanicus ^h	-	NS
Spilogale angustifrons (putorius) ^h	-	NS

signifies also a confirmed host for Leishmania

Pearson's Chi-squared test: $X^2 = 27.761$, *p* = 0.0004998

La Ecología de Dengue/CHIKV/ZIKV 30 Detet: 5

Network for Aedes aegypti and Aedes albopictus

The Ecology of Lyme

e

Conclusions: CAS

* All science is Data Science!

- * The difference now is the big, deep data available due to the Data Revolution
- * Much of this data is spatio-temporal where "things" are and when
- Data associated with the relative positions of "things" in space and time has allowed us to deduce (Data —> Phenomenology —> Taxonomy —> Theory) the nature of the interactions between physical objects: the four fundamental forces
- These forces are universal and simple

* Unlike the physical world, ecologies are CAS composed of other CAS

- * We don't have adequate conceptual or theoretical frameworks in which to understand CAS
- The phenomenology of CAS is incredibly rich and qualitatively different from that of physical systems (multi-factorial from the micro to the macro, and adaptive)
- * To describe this phenomenology you need a lot of data

Conclusions: Ecology

- Spatio-temporal data about organisms, relative to each other (biotic) and relative to the environment (abiotic), can be used to deduce the nature of the interactions between them and with the environment
 - * This can be done at the niche level (one to many) and at the community level (many to many)
 - * Our formalism allows for the incorporation of any data type, data format and data resolution
- The Niche "fitness" landscape of a taxon C can be characterised quantitatively by P(C | X) using spatio-temporal data mining
 - * What are their general topological and geometrical characterisations?
 - * How rugged / smooth are they?
 - What is the distribution of epistasis
 - Are distributions random?
 - Facilitation versus competition
 - What are the right coordinates?
 - * What is the dynamics of Niche landscapes? How do they evolve?
 - How do we determine and characterise causal chains in ecology?

Conclusions: Ecology

- * At the community level, spatio-temporal data can be used to construct Complex Inference Networks (CIN) as representations of ecosystems
 - How to distinguish causality from correlation?
 - How to determine co-dependencies?
- * The niches and community relations of diseases can be determined via CIN
 - Identification of transmission cycles and host range
 - * Leishmania, Chagas, Lyme, Dengue, Zika, West Nile,...
 - Many zoonoses are multi-host, multi-vector, multi-pathogen systems.

Grupo de Trabajo

- C3 Centro de Ciencias de la Complejidad, UNAM; Instituto de Biología, UNAM; CONABIO; Universidad Catolica de Chile; Facultad de Medicina, UNAM
- 1.- Dr. Christopher R. Stephens
- 2.- Dr. Raúl Sierra Alcocer
- 4.- Dr. Constantino González Salazar
- 5.- M. en C. Enrique del Callejo
- 6.- M. en C. Ana Ruiz
- 7.- Dr. Víctor Sánchez-Cordero
- 8.- Dr. Ángel Rodríguez Moreno
- 9.- Dra. Inge Becker
- 10.- Dr. Gabriel Granados Gutiérrez
- 11.- Dr. Carlos Napoleón Ibarra Cerdeña
- 12.- M. en C. Laura Rengifo
- 13.- Dr. Pablo Marquet

Publications

Competitive interactions between felid species may limit the southern distribution of bobcats Lynx rufus

V Sánchez–Cordero, D Stockwell, S Sarkar, H Liu, CR Stephens, ... Ecography 31 (6), 757-764, 2008

Using biotic interaction networks for prediction in biodiversity and emerging diseases CR Stephens, JG Heau, C González, CN Ibarra-Cerdeña, ... PLoS One 4 (5), e5725, 2009

Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs

R Sierra, CR Stephens International Journal of Geographical Information Science 26 (3), 441-468, 2012

Constructing ecological networks: a tool to infer risk of transmission and dispersal of Leishmaniasis

C González–Salazar, CR Stephens Zoonoses and public health 59 (s2), 179-193, 2012

Comparing the relative contributions of biotic and abiotic factors as mediators of species' distributions

C González-Salazar, CR Stephens, PA Marquet Ecological Modelling 248, 57-70, 2013

Leishmania (L.) mexicana Infected Bats in Mexico: Novel Potential Reservoirs

M Berzunza-Cruz, Á Rodríguez-Moreno, G Gutiérrez-Granados, ... PLoS neglected tropical diseases 9 (1), e0003438-e0003438, 2015

Predicting the potential role of non-human hosts in Zika virus maintenance

C González–Salazar, CR Stephens and V. Sanchez-Cordero submitted to Eco-health

UNDERSTANDING TRANSMISSIBILITY PATTERNS OF CHAGAS DISEASE THROUGH COMPLEX VECTOR-HOST NETWORKS

Laura Rengifo-Correa, Constantino González-Salazar, Juan J. Morrone, Juan Luis Téllez-Rendón, Christopher Stephens, submitted to PLoS Neglected Tropical diseases

Can you judge a disease host by the company it keeps? Predicting disease hosts and their relative importance using complex networks

CR Stephens et al, submitted to PLoS Neglected Tropical diseases

δώς μοι πâ στώ καὶ τὰν γâν κινάσω Give me a place to stand on and I'll move the earth

δώς μοι πά στώ καὶ τὰν γάν κινάσω Give me a place to stand on and I'll move the earth Give me enough data and I'll predict anything

δώς μοι πά στώ καὶ τὰν γâν κινάσω Give me a place to stand on and I'll move the earth Give me enough data and I'll predict anything

The Data Revolution will revolutionise our ability to model and understand ecology

Table 1.Bioclimatic variables from WorldClim: BIO1= Annual Mean Temperature; BIO2= Mean Diurnal Range (Mean of monthly (max temp - min temp)); BIO3= Isothermality [((BIO2/BIO7) * 100)]; BIO4= Temperature Seasonality (standard deviation *100); BIO5= Max Temperature of Warmest Month; BIO6= Min Temperature of Coldest Month; BIO7= Temperature Annual Range (BIO5-BIO6); BIO8= Mean Temperature of Wettest Quarter ; BIO9= Mean Temperature of Driest Quarter; BIO10= Mean Temperature of Warmest Quarter ; BIO11= Mean Temperature of Coldest Quarter; BIO12= Annual Precipitation; BIO13= Precipitation of Wettest Month; BIO14= Precipitation of Driest Month; BIO15= Precipitation Seasonality (Coefficient of Variation); BIO16= Precipitation of Wettest Quarter; BIO17= Precipitation of Driest Quarter; BIO18= Precipitation of Warmest Quarter; BIO19= Precipitation of Coldest Quarter. These bioclimatic variables were derived from the average monthly mean temperature (°C * 10), average monthly minimum temperature (°C * 10), average monthly maximum temperature (°C * 10) and average monthly precipitation (mm) (Hijmans et al., 2005).

Range	BIO1	BIO2	BIO3	BIO4	BIO5	BIO6	BIO7
R1	-27-5	73-97	37-44	210-984	38-76	-9865	115-166
R2	6-37	98-108	45-48	985-1759	77-114	-6432	167-189
R3	38-70	109-119	49-51	1760-2534	115-152	-31-1	190-214
R4	71-102	120-130	52-55	2535-3309	153-190	2-34	215-238
R5	103-135	131-141	56-60	3310-4084	191-229	35-67	239-262
R6	136-167	142-153	61-64	4085-4859	230-267	68-100	263-284
R7	168-199	154-164	65-67	4860-5634	268-305	101-133	285-306
R8	200-232	165-174	68-71	5635-6409	306-343	134-166	307-329
R9	233-264	175-184	72-76	6410-7184	344-381	167-199	330-355
R10	265-297	185-207	77-84	7185-7959	382-420	200-232	356-392
	BIO8	BIO9	BIO10	BIO11	BIO12	BIO13	BIO14
R1	-22-11	-352	-20-14	-364	42-507	8-84	0-12
R2	12-45	-1-31	15-48	-3-28	508-973	85-161	13-25
R3	46-79	32-64	49-82	29-60	974-1439	162-237	26-37
R4	80-113	65-97	83-117	61-92	1440-1905	238-314	38-50
R5	114-147	98-131	118-151	93-125	1906-2371	315-391	51-63
R6	148-181	132-164	152-185	126-157	2372-2836	392-467	64-75
R7	182-215	165-197	186-220	158-189	2837-3302	468-544	76-88
R8	216-249	198-230	221-254	190-221	3303-3768	545-620	89-100
R9	250-283	231-263	255-288	222-253	3769-4234	621-697	101-113
R10	284-317	264-297	289-323	254-286	4235-4700	698-774	114-126
	BIO15	BIO16	BIO17	BIO18	BIO19		
R1	37-45	18-218	0-43	1-125	0-95		1253
R2	46-54	219-418	44-87	126-249	96-191		
R3	55-63	419-618	88-131	250-373	192-287		
R4	64-72	619-818	132-175	374-497	288-383		
R5	73-81	819-1018	176-219	498-622	384-479		
R6	82-89	1019-1218	220-262	623-746	480-575		
R7	90-98	1219-1418	263-306	747-870	576-671		
R8	99-107	1419-1618	307-350	871-994	672-767		
R9	108-116	1619-1818	351-394	995-1118	768-1016		
R10	117-125	1819-2019	395-438	1119-1243	1017-1927		