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Ecology is the scientific analysis and study of

interactions

among organisms and their environment

Physics is the scientific analysis and study of

interactions

between matter and energy

How have we understood 1nteractions in physics?
Through Spatial Modeling!
Studying where things are, and when,
relative to each other.



https://en.wikipedia.org/wiki/Science

Spatial Modeling in the past...

Data — > Phenomenology — = Taxonomy > Theory

Tycho Brahe's Mars Observations
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Isaac Newton computed the acceleration of a planet moving according to Kepler's first
and second law.
1 The direction of the acceleration is towards the Sun.
2 The magnitude of the acceleration is inversely proportional to the square of the
planet's distance from the Sun (the inverse square law).
This implies that the Sun may be the physical cause of the acceleration of planets.
Newton defined the force acting on a planet to be the product of its mass and the
acceleration. So:
1 Every planet is attracted towards the Sun.
2 The force acting on a planet is in direct proportion to the mass of the planet
and in inverse proportion to the square of its distance from the Sun.
The Sun plays an unsymmetrical part, which is unjustified. So he assumed, in
Newton's law of universal gravitation:
1 All bodies in the solar system attract one another.
2 The force between two bodies is in direct proportion to the product of their
masses and in inverse proportion to the square of the distance between them.
As the planets have small masses compared to the Sun, the orbits conform
approximately to Kepler's laws. Newton's model fits actual observations more
accurately.

Data » Phenomenology

Kepler’s Laws

1. The orbit of a planet is an ellipse with the
Sun at one of the two foci.

2. A line segment joining a planet and the
Sun sweeps out equal areas during
equal intervals of time.

3. The square of the orbital period of a
planet is proportional to the cube of the
semi-major axis of its orbit.
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https://en.wikipedia.org/wiki/Orbit
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Focus_(geometry)
https://en.wikipedia.org/wiki/Orbital_period
https://en.wikipedia.org/wiki/Semi-major_axis
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
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models

What do we want to predict? What affects it?
C=(C1,C2 C3, ..., CN) The “niche”

the presence, or abundance, X = (X1, X2, X3, ..., XM)
ot,... of one or more
populations or taxa

A large part of the complexity
is in the multi-factoriality
of both C and X. Adaptation is

inherent in the fact that P(C | X)
can change in time.

Characterizes niche S(C1X)
and “anti-niche” Risk score

X = X(sd)+X(se)+X(n)+X(ev)+X(g)+X(af)+X(hm)+X({E)+X(sp)+...

Macrgc(;l)ljgactlc Micro-Climatic factors Hydrography Prey species Human activity
Behavioural . . .
characteristics Phenotypic Competitor species Predator species
characteristics

Problems of co-dependence and causality



"here’s lots ol th

Normally data mining takes place in a “categorical” space (the equivalent in ecology is a niche
space). However, most ecological data is spatio-temporal at multiple scales. Spatial data mining is
much less developed than standard data mining.

e Collection data «—— SNIB, CONABIO
e Ecological niche data |

e Ecological niche model data
e Socio-economic data
e Socio-demographic data

Problems with spatial data: e Phenotypic data |
* Vegetable and crop cover .
Different sources * Geographical data A O N 0 0 O A
Different location, data base, access,... e Medical and public health data... 1 L1 | }’
Different data types : L S P
categorical, metric, continuous, discrete,... P S S Sl N S ' el
Different spatial resolution R '

Explicit — e.g., pixel by pixel in
environmental layers

Implicit — 30,000,000 data points versus 30

“Quality” (e.g. Phenotypic characteristic)
versus “quantity” 5

Abiotic versus biotic >

The data are represented in space and
time — spatial data mining
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statistical inferences

In standard data mining, for example: P(death | age) = N(death,age)/N(age);
P(death | diabetes); P(death | age,diabetes); to infer that age is a risk factor for
death, as is diabetes. Here, we count individuals who have different traits.
There is a preferred statistical unit - the individual within which we can look
for coincidences/co-occurrences. In spatial data mining this is not the case.

We must define coincidences/co-occurrences using an appropriate uniform
spatio-temporal scale.

NO co-occurrences Two co-occurrences One co-occurrence
S ae N(ab)/N(b)
:> 3 :> 5a 2b ﬁ _ P(alb)
b a ab 3 :
Dependence of species

Here we’re in geographic space a on niche variable b
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‘'wo Example Niches

Normalized niche scores

Lutzomyias love mammals,

0.2 - 2 3
never met one they didn’t like
0.15 A
& Abiotic lutzomyia
S e L Including in a fuller, richer
5 0.05 ; Land cover lutzomyia Niche Space leads to more
e N M . " "Abioticlynx predictive models (less false
(o)) ]
Z 005 1 I I I I Land cover lynx ’
!
Biotic facilitation seems to be Model perforrance as a function of score decile
more the ndtrkhjthan competition -
Lo Score decile 00
50 - & Abiotic lutzomyia
Climatic factors are more g = Mammal lutzomyia
3 =K | ‘e 40 1 :
important for determining g \l, Land coter ltadinys
S 2 . & All lutzomyia
where Lutzomyias aren’t g S tyomy,a
X “ Abiotic lutzomyi
rather than where they are 20 1 e
10 - Land cover lynx
All lynx

0 N . . | .

Chains of causality i G1E et e R

Score decile
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\ow for Communities...

You can judge a man by his “friends”

or his “enemies”, or “parasites”, or “prey” or “predators” or...
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The Ecology of Leishmaniasis
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What does this tell us about vector control?
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Who are we?

Grupo de Trabajo

C3 - Centro de Ciencias de la Complejidad,

UNAM; CONABIO;

1.- Dr. Christopher R. Stephens

2.- Dr. Raul Sierra Alcocer

4.- Dr. Constantino Gonzalez Salazar
5.- M. en C. Enrique del Callejo

6.- M. en C. Everardo Robredo

7.- Lic. Juan Carlos Salazar Carrillo
8.- Ma. Juan Barrios

9.- Ing. Raul Jiménez *
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