The Challenges of Modeling Human Health

Chris Stephens, Director of Data Science, C3 y ICN, UNAM

The principal purpose of living systems

 and the principal purpose of science medicine, public health - is to...> Predict
for Decision making

Predict for individuals...

Diagnostics

Treatments

Predict for

 populations...
Demography, Epidemiology, Economics,...

Causas de mortaliclad
Infiecciones y Parasitosis Diarrea Neumonias Lesiones acc, e initen Enfiermedades Digestivas Aiecciones Perinatales Emfiermmedades Sist Narvioso Enfiermedades Carcliovasculares Eniermedades Respiratorias Crőnicas Eniermedades Genio-urinarias Neoplasios Malignas Desnutiricion Maternas Enfiermedades Metaboblicas A, Congexnitas Mal definictas

1940
$=2000$

Annual U.S. Healthcare Expenses per Person by Year

Source: http:3ww1.cms.cow wationalHealthexpendDatardownloadsiproi2009.pdi

Modelling and "Cause and effect"

INFLUENZA VIRAL LIFE CYCLE

At the "micro" level

Modelling and "Cause and effect"

Risk factors in males worldwide

At the "macro"

 level

Less Deaths
More Deaths

Flu-Like Epidemic

Modelling: "Cause and effect"

The standard paradigm

Diseases are Complex Adaptive Systems

They are complex

Disease and the need to work in interdisciplinary groups

adaptive

160 Scenario 1

Adaptation, health and decision making

What is a decision?

A"decision"

In the exact sciences, predictions

Curative Medicine
Less complex, less adaptative

Preventative Medicine More complex, more adaptative

In medicine and public health, predictions
tend to be heurístic
$X(t)=$ the information used to make the decisión (predict)

How much information do you need or use

 to make a "good decision"?What degree of multi-factoriality is there?
Preventative medicine requires a lot more data. Where do we get that data...? from the data revolution

Diagnoses

¿CUÁLES SON LOS SÍNTOMAS DE LA INFLUENZA? http://promocion.salud.gob.mx/dgps/ interior1/influenza informacion sintomas.html Fiebre de $38^{\circ} \mathrm{C}$ o más, tos y dolor de cabeza, acompañados de uno o más de los siguientes signos o síntomas:

- Escurrimiento nasal
- Enrojecimiento nasal
- Congestión nasal
- Dotor de articulaciones
- Dolor muscular
- Decaimiento (postración)
- Dolor al tragar
- Dolor de pecho
- Dolor de Estomago Diarrea En menores de cinco años de edad signt ofge in tr mayores de 65 años no necesariatheste errors ar fiebre.

 symptoms.html Many people infected with Zika viruthorit have swnptorncocnill only have mild symptoms. The most common symptoms of Zika are- Fever

Dchenesiondat

- Rash
- Joint pain
- Conjunctivitis (red eyes)

Other symptoms include:

- Muscle pain
- Headache

Dengue Symptoms http://www.cdc.gov/dengue/symptoms/

The principal symptoms of dengue are:
High fever and at least two of the following:

- Severe headache
- Severe eye pain (behind eyes)
- Joint pain
- Muscle and/or bone pain
- Rash
- Mild bleeding manifestation (e.g., nose or gum bleed, petechiae, or easy bruising)
- Low white cell count

Generally, younger children and those with their first dengue infection have a milder illness than older children and adults.

Influenza Symptoms http://www.cdc.gov/flu/about/disease/ complications.htm Influenza (also known as the flu) is a contagious respiratory illness caused by flu viruses. It can cause mild to severe illness, and at times can lead to death. The flu is different from a cold. The flu usually comes on suddenly. People who have the flu often feel some or all of these symptoms:

- Fever* or feeling feverish/chills
- Cough
- Sore throat
- Runny or stuffy nose
- Muscle or body aches
- Headaches

Fatigue (tiredness)
y have vomiting and diarrhea, though this is children than adults.
iat not everyone with flu will have a fever.

ンat hi Bosthbheont(O)d symptoms are:
2.15s rapar congestion
) to 8Burnos Der
lificeicicies cosst ?. y ($\begin{aligned} & \text { 7al } \\ & \text { (o. } 38.8^{\circ} \mathrm{C} \text {) }\end{aligned}$

Depending_on which virus caused your cold, you may also have:

combinatorially large set of possible symptoms!

Treatments and drugs

http://www.mayoclinic.org/diseases-conditions/gout/basics/treatment/con-2001940
Treatment for gout usually involves medications. What medications you and your doctor choose will be based on your current health and your own preferences. Gout medications can be used to treat acute attacks and prevent future attacks as well as reduce your risk of complications from gout, such as the development of tophi from urate crystal deposits.

Medications to treat gout attacks

Drugs used to treat acute attacks and prevent future attacks include:

- Nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs include over-the-counter options such as ibuprofen (Advil, Motrin IB, others) and naproxen sodium (Aleve, others), as well as more-powerful prescription NSAIDs such as indomethacin (Indocin) or celecoxib (Celebrex).
Your doctor may prescribe a higher dose to stop an acute attack, followed by a lower daily dose to prevent future attacks.
NSAIDs carry risks of stomach pain, bleeding and ulcers.
- Colchicine. Your doctor may recommend colchicine (Colcrys, Mitigare), a type of pain reliever that effectively reduces gout pain. The drug's effectiveness is offset in most cases, however, by intolerable side effects, such as nausea, vomiting and diarrhea.
After an acute gout attack resolves, your doctor may prescribe a low daily dose of colchicine to prevent future attacks.
- Corticosteroids. Corticosteroid medications, such as the drug prednisone, may control gout inflammation and pain. Corticosteroids may be administered in pill form, or they can be injected into your joint.
Corticosteroids are generally reserved for people who can't take either NSAIDs or colchicine. Side effects of corticosteroids may include mood changes, increased blood sugar levels and elevated blood pressure.

Medications to prevent gout complications

If you experience several gout attacks each year or if your gout attacks are less frequent but particularly painful, your doctor may recommend medication to reduce your risk of gout-related complications. Options include:

- Medications that block uric acid production. Drugs called xanthine oxidase inhibitors, including allopurinol (Aloprim, Lopurin, Zyloprim) and febuxostat (Uloric), limit the amount of uric acid your body makes. This may lower your blood's uric acid level and reduce your risk of gout.
Side effects of allopurinol include a rash and low blood counts. Febuxostat side effects include rash, nausea and reduced liver function.
- Medication that improves uric acid removal. Probenecid (Probalan) improves your kidneys' ability to remove uric acid from your body. This may lower your uric acid levels and reduce your risk of gout, but the level of uric acid in your urine is increased. Side effects include a rash, stomach pain and kidney

combinatorially large set of possible interventions!

And to cause a disease state...

$\mathrm{C}=$ patient suffers from diabetes mellitus type 2; $\quad \mathrm{X} _1=$ glucose level

$$
\begin{aligned}
X _2= & \text { I have been obese } 20 \text { years, I don't exercise, } \\
& \text { I drink lots of coke, I urinate often, I am constantly } \\
& \text { thirsty, my parents suffer form diabetes, } \ldots
\end{aligned}
$$

$C=$ patient will be diabetic in 20 years;

$$
X=X(\mathrm{sd})+X(\mathrm{se})+X(\mathrm{n})+X(\mathrm{ev})+X(\mathrm{~g})+X(\mathrm{af})+X(\mathrm{hm})+X(\mathrm{i})+X(\mathrm{sp})+\ldots
$$

Socio-demographic
factors Age, Gender,...

Nutrition
How much you eat, what you eat,...

Genetic
Factors Rs7903146,...

Medical History
Obesity, metabolic syndrome,,...

Family
History Diabetic father, ...

Immunological
Factors
HIV, stressed,...

Public health
Factors IMSS, ISSTE,...

Socio-economic
factors

Lifestyle Smoke, drink, exercise...

A combinatorially

 large set of possible risk factors!
Deep Data and the Data Revolution

Chronic diseases

Obesity, type 2 diabetes, heart disease, strokes, cancer etc. are diseases associated with "lifestyle" and therefore are "preventible" (?)

```
Mharmaceurical Research, Val, 25, No.9, September 2008 (0 2008)
```

Expert Review
Cancer is a Preventable Disease that Requires Major Lifestyle Changes

They are behavioral diseases,

i.e. diseases arising from decision making.

Human behavior is complex and requires "deep data".

Chronic diseases - risk factors You aren't what you eat you become what you eat

We eat less the older we get

	Variable(s)	Unstd. B	Std. Error	t	f	$\mathrm{R}^{\wedge} 2$	Sig	Lower	Upper
Moving Av.					29.236	0.343	0		
BMI Change	Constant	-1.954	0.362	-5.392			0	-2.68	-1.228
ALL	Total_Cals	0.904	0.167	5.407			0	0.569	1.239
	Variable(s)	Unstd. B	Std. Error	t	f	$\mathrm{R}^{\wedge} 2$	Sig	Lower	Upper
Moving Av.					13.397	0.193	0.001		
BMI Change	Constant	-1.625	0.444	-3.656			0.001	-2.515	-0.734
Men	Total_Cals	0.724	0.198	3.66			0.001	0.328	1.121
	Variable(s)	Unstd. B	Std. Error	t	f	$\mathrm{R}^{\wedge} 2$	Sig	Lower	Upper
Moving Av.					22.429	0.286	0		
BMI Change	Constant	-1.754	0.372	-4.711			0	-2.5	-1.008
Women	Total_Cals	0.833	0.176	4.736			0	0.481	1.185

Its the excess of calories that is the motor for obesity. The motor is more active at 20 and stops at 50 and then goes in reverse.

Chronic diseases - risk factors
 Epidemiological data from ENSANUT 2006

The motor changes its fuel...

	Edad 20	Edad 50	Edad 80	Diff 50 20	Diff 80 20	Diff 80 50	Edad 20	Edad 50	Edad 80
S	650	540	460	16.92%	29.23%	14.81%	26.75%	23.38%	24.73%
FF	230	185	140	19.57%	39.13%	24.32%	9.47%	8.01%	7.53%
M	370	330	240	10.81%	35.14%	27.27%	15.23%	14.29%	12.90%
D	450	415	370	7.78%	17.78%	10.84%	18.52%	17.97%	19.89%
F	230	270	200	-17.39%	13.04%	25.93%	9.47%	11.69%	10.75%
V	120	150	90	-25.00%	25.00%	40.00%	4.94%	6.49%	4.84%
C	380	420	360	-10.53%	5.26%	14.29%	15.64%	18.18%	19.35%
	2430	2310	1860	4.94%	23.46%	19.48%			

The fuel mix at age 20 consists of 51.5% sugars, junk food and meat and 30% fruit, vegetables and cereals. At age 50 its 45.5% and 36.5%.

Accelerated reduction in meat consumption in the aged

Chronic diseases - risk factors

Obesity is unrecognised by the sufferer in spite of the symptoms Epidemiological data from ENSANUT 2006

People think they're less overweight/ obese than they are. Symptom severity is underestimated.

Fundamental question: Why do we lie to ourselves?

Chronic diseases - risk factors Ignorance can kill
 Epidemiological data from ENCOPREVENIMSS 2006

¿Sabe leer o escribir un recado?

Ignorance and especially about health issues is as important a risk factor as obesity

For men 20-59 from PREVENIMSS 2006

- No

No sabe

- No responde

Gráfica de probabilidad de diabetes versus qué piensas que significa el sexo protegido

Beyond Epidemiological Data

 UNAM Study 2014: Genetic analysis| Driver | Value | Epsilon | $\mathbf{P}(\mathbf{C} / \mathbf{X})$ | $\mathbf{P}(\mathbf{C})$ | $\mathbf{N}(\mathbf{X} / \mathbf{C})$ | $\mathbf{N}(\mathbf{X})$ | $\mathbf{N}(\mathbf{C})$ | $\mathbf{N T o t a l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs2943641_A | 2 | 2.9391 | 0.6000 | 0.2169 | 6 | 10 | 123 | 567 |
| rs2972146_C | 2 | 2.9391 | 0.6000 | 0.2169 | 6 | 10 | 123 | 567 |
| rs2943650_G | 2 | 2.9391 | 0.6000 | 0.2169 | 6 | 10 | 123 | 567 |
| rs12629908_A | 2 | 2.6981 | 0.3116 | 0.2169 | 43 | 138 | 123 | 567 |
| rs870347_C | 2 | 2.2200 | 0.2914 | 0.2169 | 44 | 151 | 123 | 567 |
| rs1407434_G | 0 | 2.1617 | 0.2841 | 0.2169 | 50 | 176 | 123 | 567 |
| rs972283_A | 2 | 2.1543 | 0.3085 | 0.2169 | 29 | 94 | 123 | 567 |
| rs10496971_C | 2 | 1.9688 | 0.3011 | 0.2169 | 28 | 93 | 123 | 567 |
| rs2241766_C | 1 | 1.9472 | 0.2741 | 0.2169 | 54 | 197 | 123 | 567 |
| rs10885122_A | 2 | 1.9426 | 0.5000 | 0.2169 | 4 | 8 | 123 | 567 |
| rs2986742_G | 2 | 1.9121 | 0.4545 | 0.2169 | 5 | 11 | 123 | 567 |
| | | | | | | | | |
| rs1799884_A | 2 | -2.0385 | 0.0000 | 0.2169 | 0 | 15 | 123 | 567 |
| rs3943253_A | 2 | -2.0502 | 0.1364 | 0.2169 | 15 | 110 | 123 | 567 |
| rs4607517_A | 2 | -2.1053 | 0.0000 | 0.2169 | 0 | 16 | 123 | 567 |
| rs4880436_A | 2 | -2.1388 | 0.0870 | 0.2169 | 4 | 46 | 123 | 567 |
| rs174537_C | 2 | -2.1927 | 0.0851 | 0.2169 | 4 | 47 | 123 | 567 |
| rs174546_G | 2 | -2.1927 | 0.0851 | 0.2169 | 4 | 47 | 123 | 567 |
| rs174550_A | 2 | -2.1927 | 0.0851 | 0.2169 | 4 | 47 | 123 | 567 |
| rs972283_A | 0 | -2.3181 | 0.1521 | 0.2169 | 33 | 217 | 123 | 567 |
| rs2073821_A | 2 | -2.3502 | 0.1170 | 0.2169 | 11 | 94 | 123 | 567 |
| rs1513181_G | 2 | -2.3605 | 0.1250 | 0.2169 | 14 | 112 | 123 | 567 |
| rs2237895_A | 2 | -2.3836 | 0.1308 | 0.2169 | 17 | 130 | 123 | 567 |
| rs7803075_G | 2 | -2.4635 | 0.0847 | 0.2169 | 5 | 59 | 123 | 567 |
| rs896854_A | 0 | -2.5528 | 0.1398 | 0.2169 | 26 | 186 | 123 | 567 |
| rs7809589_C | 2 | -2.5964 | 0.1231 | 0.2169 | 16 | 130 | 123 | 567 |
| rs1111875_A | 0 | -3.2065 | 0.1211 | 0.2169 | 23 | 190 | 123 | 567 |

772 SNPs considered Subsets with obesity, DM2, lipids, hepatic
obesity $($ score $=0.904$, predictive but scarce $)$
obesity $\quad($ score $=0.105$, not so predictive but common $)$

Doesn't give a good model on its own

Putting it all together...

Nutrition	
Specificity (TNR)	83.40%
1 - Specificity (SPC)	16.60%
Sensitivity (FPR)	29.69%
Accuracy (ACC)	72.76%
AUC ROC	0.63
Lifestyle	84.17%
Specificity (TNR)	15.83%
1 - Specificity (SPC)	31.25%
Sensitivity (FPR)	73.68%
Accuracy (ACC)	0.70
AUC ROC	
Lifestyle and Nutrition	78.38%
Specificity (TNR)	21.62%
1 - Specificity (SPC)	46.88%
Sensitivity (FPR)	72.14%
Accuracy (ACC)	0.71
AUC ROC	
Lifestyle and Nutrition and	
Personal and Family History	
Specificity (TNR)	81.08%
1 - Specificity (SPC)	18.92%
Sensitivity (FPR)	51.56%
Accuracy (ACC)	75.23%
AUC ROC	0.76

3,524 variables
Genetic, epidemiological, physiological,...
Epidemiological: Personal (81), Anthropometry (49), Personal history (130), Family History (548), Self-health evaluation (226), Nutrition (220), Lifestyle (390), Health knowledge (293).

There are predictive variables in all categories. The more variables you put together the more predictability you get.

PROOF that it is VERY multifactorial.

Chronic diseases

To understand the physiology and genetics of such diseases is important. However, these diseases are predominantly "behavioural" diseases, associated with "bad" decisions. Why do we make "bad" decisions? What behaviour is plastic?

Establishing and untangling causal chains is very difficult. Causality must be respected...e.g.,
overeating \longrightarrow overweight \longrightarrow inflammation...
Not
inflammation \longrightarrow overeating...

The Challenges of Modelling Human Health

Human health, and any disease, is a CAS. To model such systems is on the very forefront of science. We don't do it well.

* CAS are extraordinarily multifactorial, requiring big data across multiple scales: genetics, epigenetics, physiology, psychology, neuroscience, epidemiology, sociology,... We don't have it.
* CAS require appropriate frameworks for generating data and sharing data. We don't have them.
* CAS require interdisciplinary teams to analyse and model the data. We don't have them.
* We need a more data science centered medicine and health science, requiring a shift in emphasis from curative medicine to preventative medicine

We have the technology to do the data "plumbing" but not the data semantics. We have a lot of interesting work to do over the coming months, years, decades,...

You're all invited!

