Prevention, Early Warning and Causality in Metabolic Disease

Christopher R. Stephens

C3 – Centro de Ciencias de la Complejidad y Instituto de Ciencias Nucleares, UNAM

Mathematics of Biological Rhythms, 4-6 DECEMBER 2018, UNIVERSITY OF NORTHUMBRIA

Acknowledgements

Chris Stephens C3 y ICN, UNAM Marcia Hiriart C3 y IFC, UNAM Myrian Velasco IFC UNAM **Enrique Hernández-Lemus INMEGEN** Alejandro Frank C3 y ICN, UNAM Bruno Estañol INNSZ Guillermo Melendez, Hospital General Ruben Fossion C3 y ICN, UNAM Ali Ruíz Coronel C3. UNAM Samuel Canizales INMEGEN y UNAM Luz Navarro FM UNAM Beda Espinosa FM UNAM Antonio Barajas FM UNAM **Ricardo Martínez FM UNAM** Alejandro Hernández FM UNAM Luís Flores FM UNAM Gaby Arauz INEGI Katherine Stephens Santa Clara Karol Baca INMEGEN Alejandra Romero IIMAS UNAM Alejandro Maldonado IIMAS UNAM Jorge Rodríguez IIMAS UNAM Carlos A. Hernández IIMAS UNAM Ruud Buijs IIB, UNAM Carolina Escobar FM, UNAM

Ana Leonor Rivera ICN, UNAM Natalia Mantilla C3 y FC, UNAM Sergio Hernández C3 y FC, UNAM Jonathan Easton C3, UNAM Hugo Flores C3 y IIMAS, UNAM Luis Miguel Gutierrez INGer Ulises Perez INGer **Roberto Carlos Castrejon INGer** Concepción García FC, UNAM Francisco Fernández IFC, UNAM Dagmara Wrzecionkowska FCP, UNAM José Antonio Rivera FC, UNAM Heriberto Sicilia FC, UNAM Ivette Rizzo C3, UNAM Jorge Morales SEDESA Edgar Mendez SEDESA Jesus Batta C3 y IIMAS, UNAM Lucia Ledesma Hospital XX de Noviembre Lizbeth de la Cruz, Univ. Washington Arturo Coronel Hospital Angeles Antonio Rivera FC, UNAM Osvaldo Trujillo IIMAS UNAM Gabriela Goméz Mont LabCDMX Valentina Delgado LabCDMX Leonardo Zapata FM UNAM Rodrigo Saucedo, Fundacion Carlos Slim Rolando Diaz-Loving FP, UNAM

Why are they Important?

Because they're everywhere and getting worse

Percentage of adults with obesity click countries for survey details and definitions

*Diagnóstico previo de Diabetes. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016 (ENSANUT MC 2016) Informe final de resultados OECD (2017), Health at a Glance 2017: OECD Indicators, OECD Publishing, Paris. http://dx.doi.org/10.1787/health glance-2017-en

International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium International Diabetes Federation, 2017. http://www.diabetesatlas.org

Figure 2. Obesity rates

And we're not doing a very good job at stopping them!

Estimates of Funding for Various Research, Condition, and

Disease Categories NIH

Research/Disease Areas	FY 2016Actual (Dollars in millions)	2015 US Mortality	2015 US Prevalence (Standard deviation)		
Cancer	5589.00	652,672	8.7% (0.20%)		
Cardiovascular	2108.00	1,464,485	-		
Chronic Obstructive Pulmonary Disease	97.00	292,471	6.2% (0.18%)		
Diabetes 4/	1084.00	252,806	9.7% (0.22%)		
Digestive Diseases	1745.00	-			
Heart Disease	1289.00	1,202,319	11.7% (0.26%)		
Heart Disease - Coronary Heart Disease	419.00	536,339	6.1% (0.17%)		
Hypertension	224.00	427,631	27.0% (0.33%)		
Inflammatory Bowel Disease	126.00	2,966	-		
Obesity	965.00	39,590	30.0% (0.38%)		
Stroke	308.00	234,867	-		
	13,954	5,106,146			
% of total	17%	73%			
Physical Activity	392.00	-	-		
Prevention	7566.00	-	-		
Tobacco	299.00	-	-		
Nutrition	1615.00	-	-		
Basic Behavioral and Social Science	1804.00	-	-		
Behavioral and Social Science	4137.00	_	-		
	15,813				

Are there Early Warnings for Metabolic Diseases?

Of course there are!

Many

But first... Just what is an "Early Warning"?

There are two principal components:

A Prediction

P(C(t) | **X**(t'))

And a rule

IF(CONDITION) THEN (ACTION)

where the **CONDITION** will depend on the prediction

P(C(t)|X(t')) What do we need for this to be useful?

- An EW for what? C(t)
- What indicates the EW?
 - $X(t') = (X_1(t), X_2(t), ..., X_N(t))$ one or more factors
- What's the reliability of the Early Warning?
 - The predictability of the classifier P(. | .)
 - e.g. If P(C(t) | X(t')) ~ P(C(t)) then its not a very reliable EW
- Is the EW actionable?
 - i.e., if we observe it can we do something to prevent C from occurring or alleviate its impact? If this is the case then we're changing P(C(t) | X(t'))!

- Just how "early" is the EW?
- Depends on t-t' (t > t' causality)
- For t ~ t' its not very early
- If t' << t it may be *too early*

Preventative vs. curative medicine Are you already in the state or not?

Even in the case that t ~ t' it can still be very useful. In fact, its just standard medical diagnostics...

P(X(t)|C(t)) - The likelihood that you see the symptoms X(t) given the disease state C.

 $IF(P(X(t)|C(t)) > P_c)$ THEN (diagnose C)

Usually the heuristic P(X(t)|C(t)) is an estimate from the doctor. Maybe some factors $X_i(t)$ are easier to measure but not standardly used. E.g., the spectrum of fluctuations of a time series, such as an ECG.

Biorhythm Scales

- From intra-cellular signaling
- to inter-cellular signaling
- to organ/organ signaling
- to environment/organ interactions
 - behavior: foraging, eating, sleep, etc.
- to behavior change and
- Evolution

What is the nature of the corresponding time series? What is the natural variational scale? What is the natural coarse graining scale? When does the time series reflect adaptive versus "deterministic" behavior? Does it reflect homeostasis? (Over what time scale?)

- ms vs sec vs mins vs hours vs days vs weeks vs years vs...
- "micro" versus "macro" homeostasis

Time series are adaptive Associated with conduct and decision making

Deciles trends in white US males by birth cohort

Remember: Evolution likes diversity

Komlos, J., & Brabec, M. (2010). The Trend of Mean BMI Values of US Adults, Birth Cohorts 1882-1986 Indicates that the Obesity Epidemic Began Earlier than Hitherto Thought. doi: 10.3386/w15862

Conservation of Energy

And what does "Needed" mean anyway?

What happens to one unit of a given food? Extremely complex

2) How do they depend on behaviour?3) How are they correlated in time?

Result of a 12000 calorie per day diet

Activity

Behaviour:

Direct and

Indirect

BMR

Indirect

Behaviour:

Needed for what?

This is dependent on the environment both **now** and in the **future**

Result of a 12000 calorie per day diet

Heat generation

Behaviour:

Direct and

Indirect

Need versus Behaviour versus Environment

Are there Behavioural Early Warnings?

And no homeostasis here...

You aren 't what you eat you become what you eat

Regression of BMI change versus calorie excess

	Variable(s)	Unstd. B	Std. Error	t	f	R^2	Sig	Lower	Upper
Moving Av.					29.236	0.343	0		
BMI Change	Constant	-1.954	0.362	-5.392			0	-2.68	-1.228
ALL	Total_Cals	0.904	0.167	5.407			0	0.569	1.239
	Variable(s)	Unstd. B	Std. Error	t	f	R^Z	Sig	Lower	Upper
Moving Av.					13.397	0.193	0.001		
BMI Change	Constant	-1.625	0.444	-3.656			0.001	-2.515	-0.734
Men	Total_Cals	0.724	0.198	3.66			0.001	0.328	1.121
	Variable(s)	Unstd. B	Std. Error	t	f	R^Z	Sig	Lower	Upper
Moving Av.					22.429	0.286	0		
BMI Change	Constant	-1.754	0.372	-4.711			0	-2.5	-1.008
Women	Total_Cals	0.833	0.176	4.736			0	0.481	1.185

Epidemiological data from ENSANUT 2006

This gradually decreasing calorie excess seems to be the motor for the population level increase in BMI.

Overeating as an Early Warning of obesity?

What are some other Early Warnings of Obesity?

What can someone's exercise pattern tell us?

Obesity % versus historical exercise behavior A > recommended exercise, B < recommended, * don't care; (30 years ago, 20y, 10y, 5y, 1y, now)

Its worse to have had good habits and lost them than never to have had them

Exercise history	Obesity rate	Exercise history	Obesity rate
A****	25.2%	AAA***	24.6%
B****	24.0%	BBB***	25.1%
*A****	24.2%	AAB***	26.7%
*B****	25.1%	AAAA**	21.2%
****A*	17.0%	BBBB**	26.3%
****B*	29.8%	AAAB**	37.5%
AA****	24.9%	AAAAA*	13.0%
BB****	24.7%	BBBBB*	27.6%
AB****	27.5%	AAABB*	40.9%

History	ϵ	N_x	N_{cx}	%	score
A*A*BB	3.56	94	38	40.43	0.73
AAA*B	3.55	91	37	40.66	0.74
AA**BB	3.53	113	44	38.94	0.67
$AA^{**}B^*$	3.40	131	49	37.40	0.60
A***BB	3.23	137	50	36.50	0.57
*A***A	-3.27	157	21	13.38	-0.75
**AAA	-3.27	157	21	13.38	-0.75
AA**AA	-3.51	103	10	9.71	-1.11
A**AA	-3.61	134	15	11.19	-0.95
***AA	-3.76	193	25	12.95	-0.79

What about other metabolic disorders? An Early Warning of what?

glucose av	tbg stdev	tgb av	chol stdev	chol av	HOMA stdev	HOMA av
96.95	115.08	165.72	42.12	201.86	2.13	2.13
2.87	Variation factor	1.44	Variation factor	4.79	Variation factor	1.00
hdld av	uric stdev	uric av	crs stdev	crs av		0.41
47.57	2.33	5.44	0.42	0.81		
3.86	Variation factor	2.34	Variation factor	1.95		
ldl av	hba stdev	hba av	insulina stdev	insulina av		
122.47	1.29	5.35	6.41	8.44		
2.16	Variation factor	4.16	Variation factor	1.32		
	glucose av 96.95 2.87 hdld av 47.57 3.86 Idl av 122.47 2.16	glucose av tbg stdev 96.95 115.08 96.95 Variation factor 2.87 Variation factor hdld av uric stdev 47.57 2.33 3.86 Variation factor Idl av hba stdev 122.47 1.29 2.16 Variation factor	glucose av tbg stdev tgb av 96.95 115.08 165.72 2.87 Variation factor 1.44 2.87 Variation factor 1.44 Mdld av uric stdev uric av 47.57 2.33 5.44 3.86 Variation factor 2.34 Idl av hba stdev hba av 122.47 1.29 5.35 2.16 Variation factor 4.16	glucose avttpg stdevttgb avchol stdev96.95115.08165.7242.122.87Variation factor1.44Variation factor0000hdld avuric stdevuric avcrs stdev47.572.335.440.423.86Variation factor2.34Variation factorIdl avhba stdevhba avinsulina stdev122.471.295.356.412.16Variation factor4.16Variation factor	glucose avttps stdevttgb avchol stdevchol av96.95115.08165.7242.12201.862.87Variation factor1.44Variation factor4.79000000hdld avuric stdevuric avcrs stdevcrs av47.572.335.440.420.813.86Variation factor2.34Variation factor1.95Idl avhba stdevhba avinsulina stdevinsulina av122.47Variation factor5.356.418.442.16Variation factor4.16Variation factor1.32	glucose avtbg stdevtgb avchol stdevchol avHOMA stdev96.95115.08165.7242.12201.862.132.87Variation factor1.44Variation factor4.79Variation factor0000000hdld avuric stdevuric avcrs stdevcrs av0.8147.572.335.440.420.810.813.86Variation factor2.34Variation factor1.95101 avhba stdevhba avinsulina stdevinsulina av122.471.295.356.418.442.16Variation factor4.16Variation factor1.32

Homeostatic bounds are quite different for different metabolic biomarkers

To get an Early Warning we need to be alert to it

Heterogeneity of Aetiology of Metabolic Syndrome Age and Education

Incidence of # of MS conditions additional to Waist circumference as a function education

# MS conditions	Primary	Sec	Lic	Grad	Post
0	16.28%	16.96%	24.22%	29.57%	32.48%
1	25.58%	36.09%	28.03%	39.13%	34.19%
2	37.21%	31.74%	29.76%	19.13%	21.37%
3	18.60%	13.04%	16.61%	11.30%	11.97%
4	2.33%	2.17%	1.38%	0.87%	0.00%

Metabolic wear and tear: BMI, age and educational level as "Early Warning" parameters

Table 3. Binomial logistic regressions of anthropometric, blood pressure, and fasting blood test variables taking as class variable the at risk population using the cutoffs of supplementary material Table S1, for the independent variables education (Edu), BMI, age and sex.

	Variable	N	Edu exp(b)	р	BMI exp(b)	p	Age exp(b)	р	Sex exp(b)	р
	BMI	1073	0.681	0.000 **			1.021	0.001 *	0.946	0.726
	WC (women)	689	0.700	0.000 **			1.042	0.000 **		
	WC (men)	384	0.912	0.384			1.047	0.000 **		
	SBP	1073	0.760	0.022 *	1.190	0.000 **	1.065	0.000 **	0.393	0.000 **
anandant an	DBP	1073	0.939	0.491	1.167	0.000 **	1.038	0.000 **	0.614	0.016 *
ependent on	PP	1073	0.848	0.507	1.129	0.004 *	1.061	0.011 *	0.382	0.087
ducation	Glucose	1072	0.926	0.306	1.101	0.000 **	1.055	0.000 **	0.910	0.580
	Hb A1c	1068	0.767	0.034 *	1.095	0.000 **	1.064	** 0.000	1.544	0.150
	Insulin	1072	1.068	0.679	1.203	0.000 **	0.985	0.276	0.609	0.125
	HOMA-IR	1071	0.846	0.011 *	1.240	0.000 **	1.013	0.022 *	1.075	0.624
	Uric acid (women)	689	1.025	0.832	1.106	0.000 **	1.016	0.115		
	Uric acid (men)	383	0.856	0.140	1.110	0.000 **	0.994	0.480		
	Triglycerides	1072	0.859	0.014 *	1.091	0.000 **	1.025	0.000 **	0.469	0.000 **
	Total cholesterol	1073	0.993	0.907	1.008	0.549	1.041	0.000 **	0.880	0.335
	HDL (women)	689	0.770	0.001 *	1.116	0.000 **	0.983	0.012 *		
	HDL (men)	384	0.737	0.002 *	1.065	0.007 *	1.002	0.797		
	LDL	1070	0.986	0.813	1.009	0.489	1.037	0.000 **	0.805	0.109
	Metabolic Syndrome	1073	0.827	0.005 *	1.202	0.000 **	1.036	0.000 **	0.960	0.789

Independent of BMI and education

* indicates statistically significant at the p < 0.05 level.

D

** indicates statistically significant at the p < 0.001 level.

Need longitudinal data to really analyse EWs

The Physiolome over a Lifetime

Global.xlsx

Grafo de matriz de adyacencia

The Physiolome over a Lifetime

1-5 life decades; 6-10 educational levels

Katz, L. (1953). "A New Status Index Derived from Sociometric Analysis." Psychometrika, 18, 39-43.