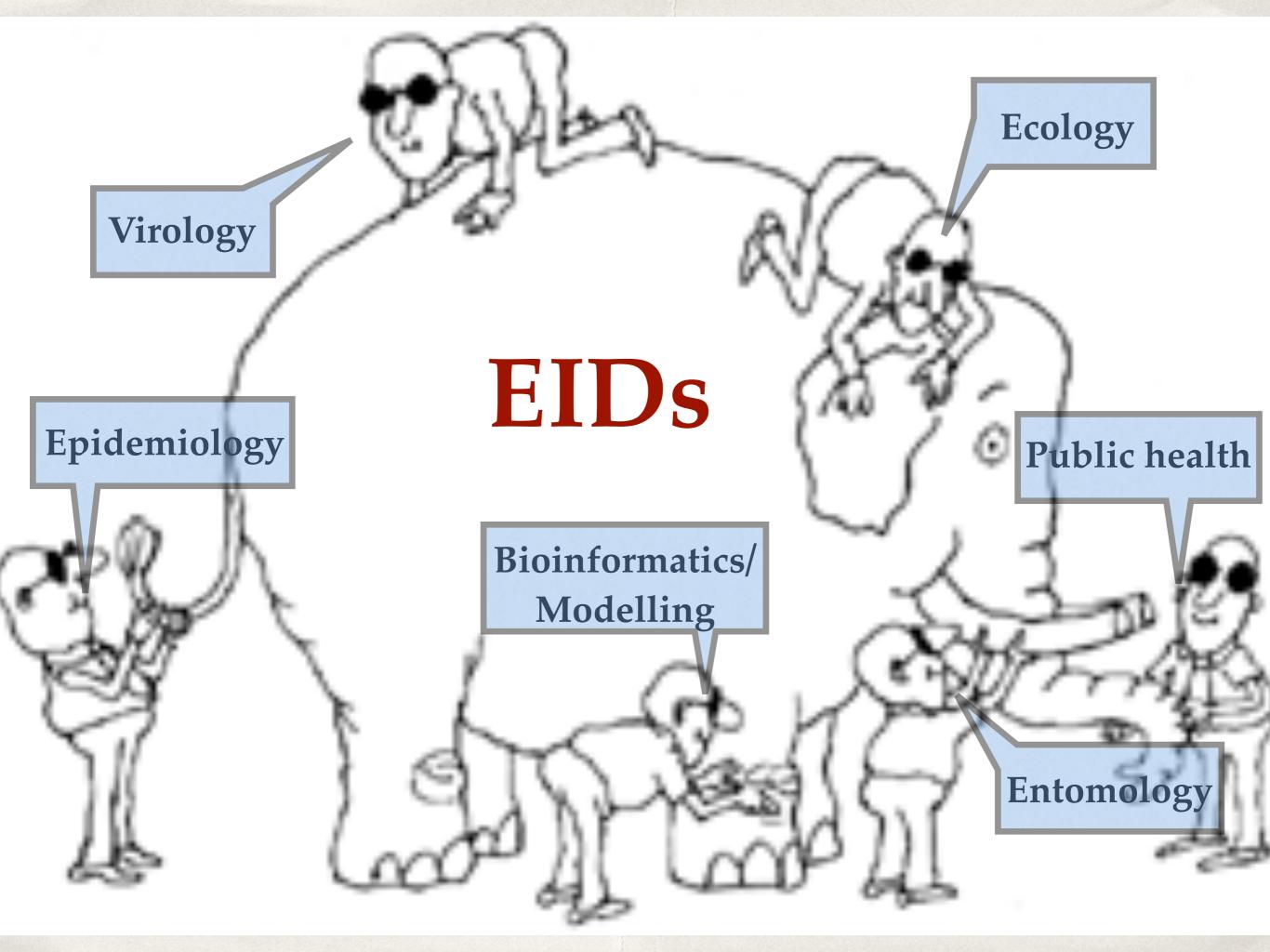


New Perspectives from Complexity Science on the Prevention and Prediction of EIDs

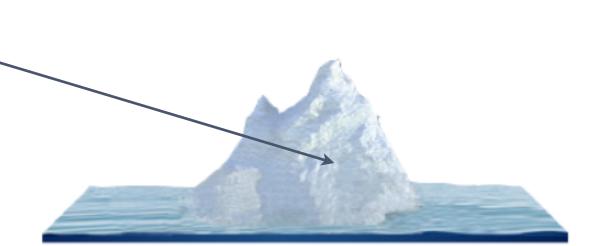
Chris Stephens

C3-Centro de Ciencias de la Complejidad y Instituto de Ciencias Nucleares, UNAM Workshop "Mitigating Emerging Infection Challenges for Public Security and Justice" Jan. 9th-12th 2018



They are dynamical and adaptive

Number of cases x 1000


Scenario 2 Scenario 1 160 Scenario 3 Scenario 4 O O Quarantine 120 Interventions ecisions 80 Vaccination program 40 0 10 30 40 50 70 0 20 60 Time in weeks Preventative **Treatment** vector control

We want to predict and understand "histories" but nothing is written in stone. What is the "space" of interventions?

What do we know...? Known cases Known vectors Known hosts Known risk factors

How do we infer what's under the water?

What do we know...? Known cases Known vectors Known hosts Known risk factors **Known interactions** We need new methods to Integrating Hulliple Sources model these defining data... and multiple formats Adaptive Systems What don't we know...?

What don't we know...? Unknown cases Unknown vectors Unknown hosts Unknown risk factors **Unknown interactions**

3

Human activity

What is the niche of an EID?

What do we want to predict? C - the presence, or abundance, of cases of a disease,... Probability to find disease

Probability to find disease given the niche factors **X**

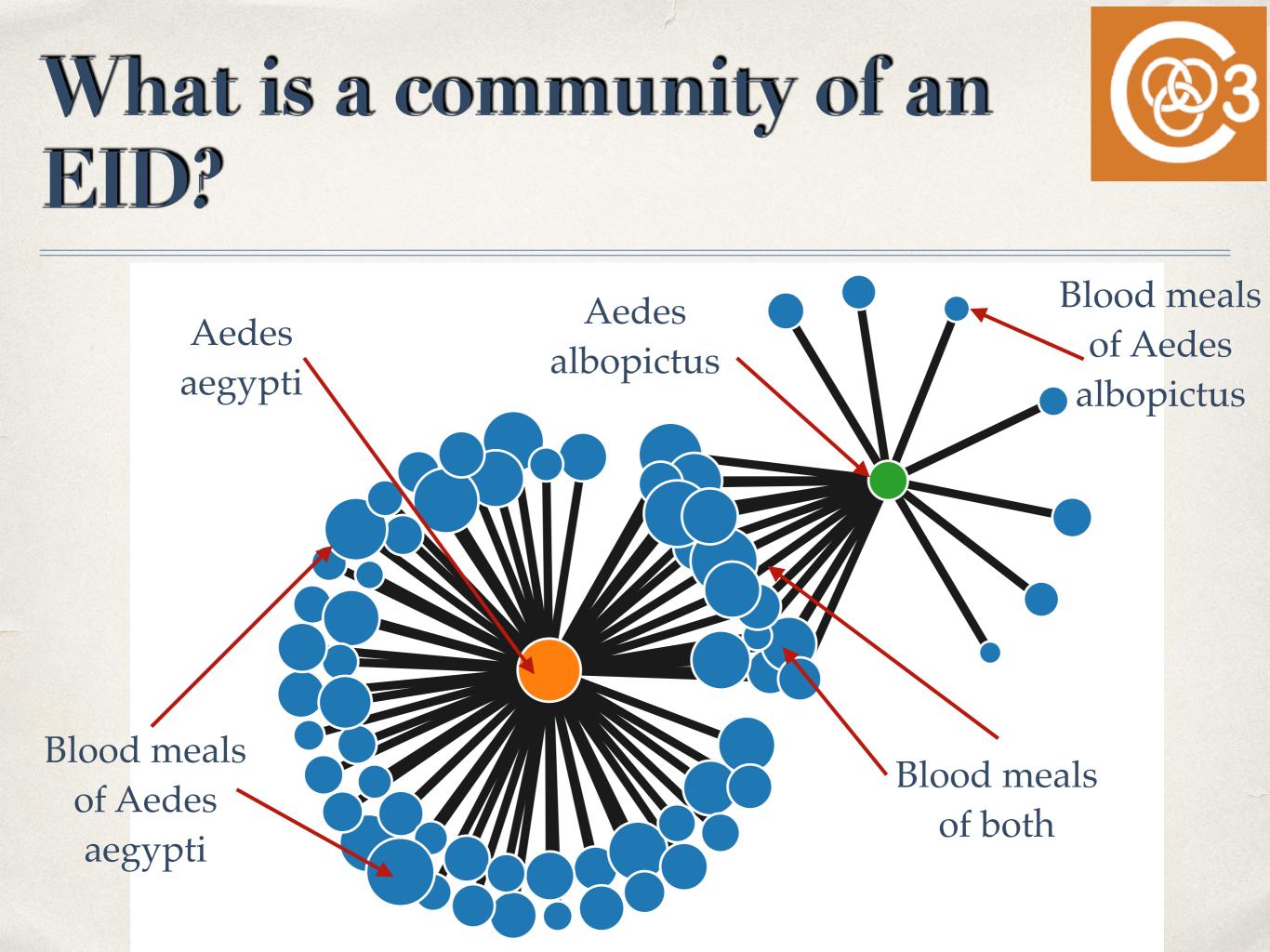
Characterizes niche and "anti-niche" S(CIX) Risk score What affects it? The "niche" **X** = (X1, X2, X3, ..., XM)

A large part of the complexity is in the multi-factoriality of both C and X. Adaptation is inherent in the fact that P(C | X) can change in time.

 $\mathbf{X} = X(sd) + X(se) + X(n) + X(ev) + X(g) + X(af) + X(hm) + X(i) + X(sp) + \dots$

Macro-Climactic factors

c Micro-Climatic factors Behavioural characteristics Phen


Phenotypic characteristics Hydrography

Competitor species

Predator species

Host species

Problems of co-dependence and causality

Ecological modelling from a "Data Science" perspective

The Data Revolution has provided a unique opportunity to construct multi-factorial ecological models for emerging diseases. However, most ecological data is spatio-temporal at multiple scales. Spatial data mining is much less developed than standard data mining.

Spatial data

P(C | X(t))

Co-occurrence between arbovirus occurrence, C, and niche variables, X(t) ecological interaction

Problems with data:

Different sources

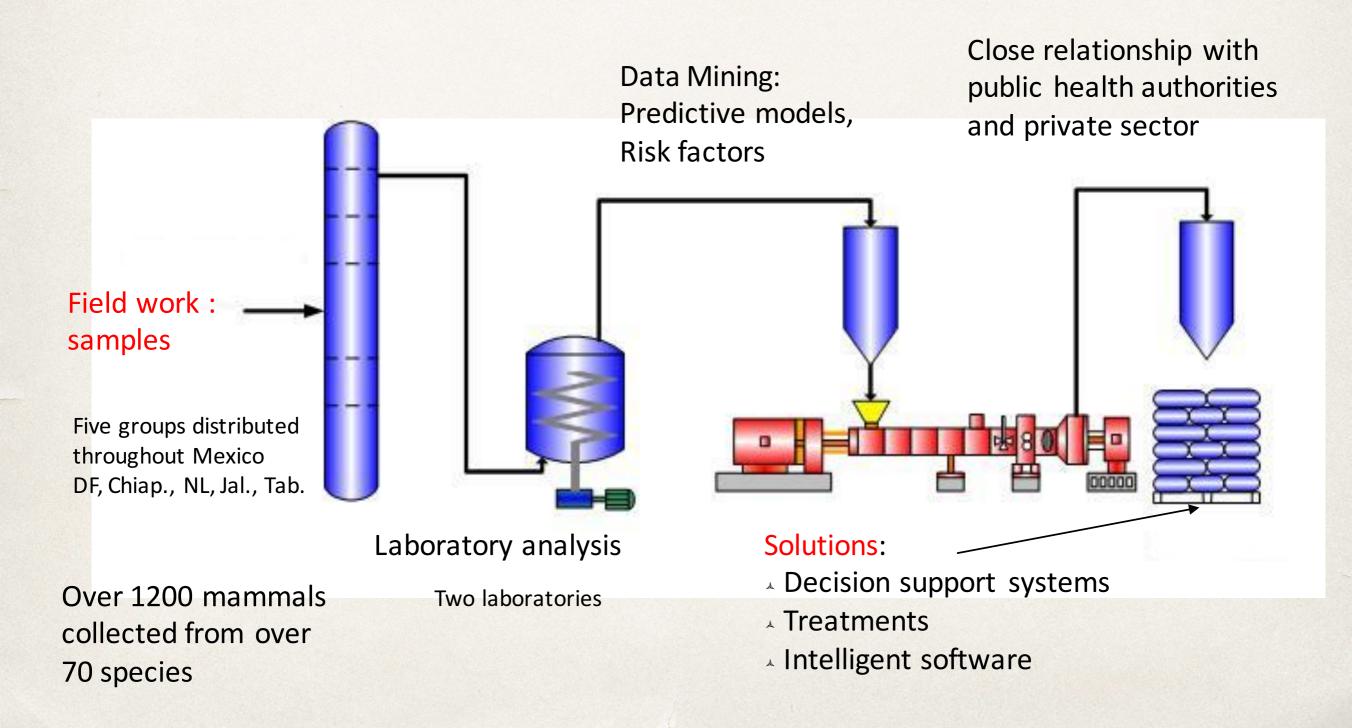
Different location, data base, access,...

Different data types

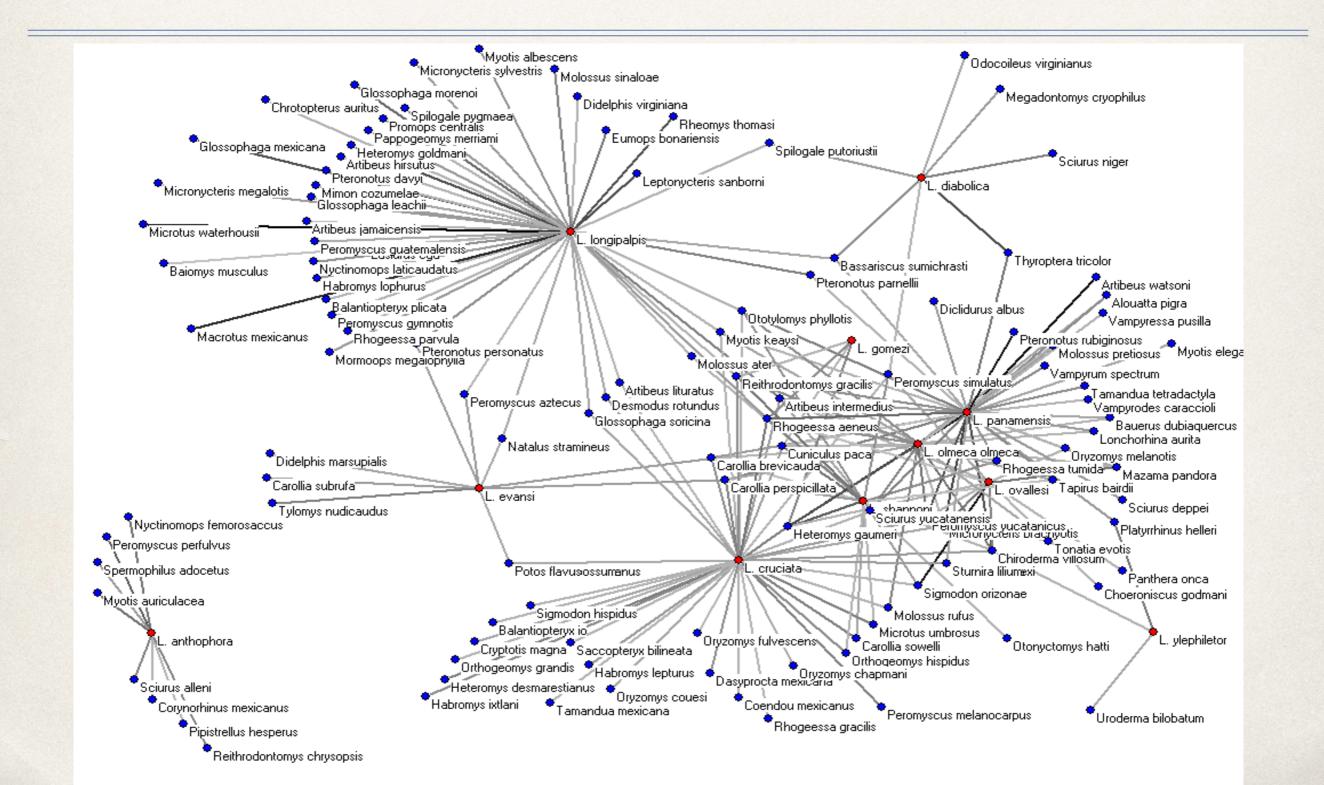
categorical, metric, continuous, discrete,...

Different spatial resolution

Explicit – e.g., pixel by pixel in environmental layers Implicit - 30,000,000 data points versus 30 Abiotic versus biotic


- Collection data
- Ecological niche data
- Ecological niche model data Model/niche construction
- Socio-demographic data
- Phenotypic data
- Vegetable and crop cover
- Geographical data
- Medical and public health data...

The data are represented in space and time – spatial data mining


iche descrij

To Link Data-Predictions-Experiment The Emerging Disease "production line"

Data-Predictions Test zoonosis - Leishmaniasis

3

Species	3	Negative	Positive	Total	% positive	(95 For
Carollia sowelli	8.83	43	2	45	4.4	-1 - 14
Heteromys gaumeri*	8.8	5	0	5	0	-15 - 29
Peromyscus mexicanus Heteromys desmarestianus*	8.79 8.72	115 30	6 0	121 30	5 0	2 - 11 -2 - 16
Molossus rufus	8.63	1	0	1	0	-42 - 56
Glossophaga soricina	8.57	19	7	26	26.9	-3 - 16
Carollia perspicillata	8.5	8	0	8	0	-11 - 24
Pteronotus parnellii	8.16	4	0	4	0	-18 - 31
Desmodus rotundus Sturnira lilium	8.15 8.03	13 56	1 7	14 63	7.1 11.1	-6 - 20 1 - 13
Artibeus phaeotis	8.01	35	1	36	2.8	-1 - 15
Oryzomys couesi	7.73	2	0	2	0	-28 - 41
Ototylomys phyllotis*	7.56	9	1	10	10	-9 - 22
Sigmodon hispidus*	7.28	36	4	40	10	-1 - 14
Peromyscus yucatanicus*	7.25	3	0	3	0	-22 - 35
Didelphis virginiana Didelphis marsupialis	7.12 6.44	3 11	0 0	3 11	0 0	-22 - 30 -8 - 21
Philander opossum	6.25	6	1	7	14.3	-12 - 2
Centurio senex	6.01	1	0	1	0	-42 - 5
Artibeus jamaicensis	5.98	81	5	86	5.8	1 - 12
Artibeus lituratus	5.84	38	3	41	7.3	-1 - 14
Myotis keaysi	5.61	2	0	2	0	-28 - 4
Chiroderma villosum	5.56	5	0	5	0	-15 - 2
Saccopteryx bilineata	5.3 5.23	1 71	0 8	1 79	0 7.3	-42 - 5 1 - 12
Sciurus aureogaster Baiomys musculus	5.23	2	8 0	2	0	-28 - 4
Artibeus watsoni	5.13	2	0	2	0	-28 - 4
Choeroniscus godmani	5.05	10	3	13	23.1	-7 - 20
Pteronotus personatus	5.03	3	1	4	25	-18 - 3
Reithrodontomys mexicanus	4.91	1	0	1	0	-42 - 5
Oryzomys rostratus	4.87	22	1	23	4.3	-4 - 17
Micronycteris microtis	4.23 4.2	1 6	0 0	1 6	0 0	-42 - 5 -13 - 2
Oligoryzomys fulvescens Peromyscus leucopus	4.2 3.8	22	0 4	26	15.4	-13 - 2 -3 - 16
Sturnira ludovici	3.79	24	1	25	4	-3 - 17
Vampyrodes caraccioli	3.69	1	0	1	0	-42 - 5
Liomys pictus	3.61	47	1	48	2.1	0 - 14
Glossophaga commissarisi	3.49	2	6	8	75	-11 - 2
Lonchorhina aurita	3.48	1 0	0 1	1	0 100	-42 - 5 -42 - 5
Phyllostomus discolor Platyrrhinus helleri	3.48 3.36	5	0	5	0	-42 - 3
Uroderma bilobatum	3.34	4	0	4	0	-18 - 3
Urocyon cinereoargenteus	2.97	1	0	1	0	-42 - 5
Procyon lotor	2.95	1	0	1	0	-42 - 5
Myotis velifer	2.58	3	0	3	0	-18 - 3
Microtus mexicanus	2.53	16	0	16	0	-6 - 19
Myotis nigricans Leptonycteris yerbabuenae	2.47 2.43	2	0 1	2 2	0 50	-28 - 4 -28 - 4
Reithrodontomys fulvescens	2.08	20	0	20	0	-4 - 18
Neotoma mexicana	1.99	5	0	5	0	-15 - 2
Eptesicus fuscus	1.82	1	0	1	0	-42 - 5
Peromyscus levipes	1.34	1	0	1	0	-42 - 5
Sorex saussurei	1.29	3	0	3	0	-22 - 3
Osgoodomys banderanus Liomys irroratus	1.21 1.16	9 8	0 0	9 8	0	-10 - 2 -11 - 2
Myotis auriculus	0.22	° 2	0	2	0	-11 - 2
Tadarida brasiliensis	-0.09	1	0	1	0	-42 - 5
Peromyscus hylocetes	-0.28	2	0	2	0	-28 - 4
Antrozous pallidus	-0.34	1	0	1	0	-42 - 5
Peromyscus zarhynchus	-0.46	2	0	2	0	-28 - 4
Chaetodipus hispidus	-0.71	4	0 0	4	0	-18 - 3
Peromyscus pectoralis Neotomodon alstoni	-0.73 -0.9	2 17	0	2 17	0 0	-28 - 4 -5 - 19
Baiomys taylori	-1.16	10	3	13	23.1	-7 - 20
Chaetodipus nelsoni	-1.24	3	0	3	0	-22 - 35
Neotoma micropus	-1.27	16	0	16	0	-6 - 19
Peromyscus maniculatus	-1.37	58	2	60	3.3	0 - 13
Peromyscus eremicus Perognathus flavus	-1.41 -1.52	0 1	1 0	1	100 0	-42 - 50 -42 - 50
Dipodomys merriami	-1.32	1	0	1	0	-42 - 30
2.pouomys mer rumi	2.01	1	U	1	U	-42 - 30

Predictions-Experiment Test zoonosis - Leishmaniasis

- Only about 50 (2.5%) of mammals on the American continent have been identified as hosts of Leishmania
- In Mexico only 8 out of 419 (2.1%) had been identified as hosts
- We collected 922 individuals from 70 species
- Predicted and confirmed 21 new species of mammal as carriers of Leishmania in Mexico
- 13 of them are bats, identified for the first time in Mexico
- Squirrels identified as carriers
- 33% of collected species were confirmed as hosts
- Overall infection rate was 6.7%
- No species could be rejected as a host at this infection rate at the 95% confidence level
- Changes the picture for control of Leishmania totally;
- Leishmania and Lutzomyias are eclectic in their host source.
- Linnean classification is NOT ecologically relevant

Baiomys taylori Chaetodinus nelsoni Neotoma micropus Peromyscus maniculatus

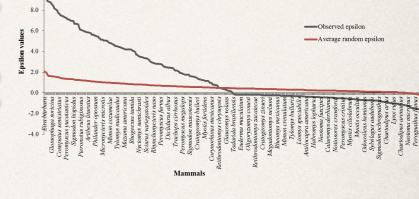
10

-1.16

-1.24 -1.27

-1.37

-1.41


-1.52 -2.01

Peromyscus eremicus Data-Predictions-Experime Perognathus flavus Test zoonosis - Leishmaniasis

			0 (
	Mammals	Epsilon	Conf.
1	Eira barbara	10.1683	and the second
	Rhogeessa aeneus	9.3649	2200
	Artibeus intermedius	9.1628	
	Reithrodontomys gracilis	8.8921	Yes
	Carollia sowelli	8.8303	
	Heteromys gaumeri	8.8000	Yes
	Peromyscus mexicanus	8.7859	
	Heteromys desmarestianu	8.7164	Yes
	Molossus rufus	8.6277	
	Glossophaga soricina	8.5713	
	Carollia perspicillata	8.5030	
	Orthogeomys hispidus	8.3468	
	Pteronotus parnellii	8.1632	-
14	Desmodus rotundus	8.1519	
15	Dasyprocta mexicana	8.1128	
16	Sturnira lilium	8.0290	
	Dermanura phaeotis	8.0055	
	Dasyprocta punctata	7.9678	
19	Oryzomys couesi	7.7253	
	Potos flavus	7.7246	
	Conepatus semistriatus	7.6879	1.0.0
	Ototylomys phyllotis	7.5587	Yes
23	Ateles geoffroyi	7.4787	
	Cryptotis magna	7.4207	
	Cuniculus paca	7.3220	
	Lampronycteris brachyotis	7.2852	
27	Sigmodon hispidus	7.2805	Yes
	Peromyscus yucatanicus	7.2486	Yes
	Oryzomys chapmani	7.1242	100
	Didelphis virginiana	7.1150	
31	Peromyscus melanocarpus	7.0260	
	Microtus umbrosus	6.9630	
	Thyroptera tricolor	6.9630	1.
	Nasua narica	6.8953	
	Megadontomys cryophilus	6.6830	A Second
30	Oryzomys alfaroi	6.6816	
	Sorex veraepacis	6.6797	
	Carollia subrufa	6.6316	1111
39	Peromyscus aztecus	6.6173	V
	Didelphis marsupialis	6.4390	Yes
	Sciurus yucatanensis	6.3865	
	Philander opossum	6.2546	
	Habromys ixtlani	6.1120	
	Microtus waterhousii	6.1120	Constant of
	Pteronotus rubiginosus	6.1120	
	Reithrodontomys microdor	6.0967	
	Coendou mexicanus	6.0268	
	Centurio senex	6.0076	4.59.00
	Artibeus jamaicensis	5.9786	
50	Glossophaga morenoi	5.8847	

-	Mammals	Epsilon	Conf
51	Molossus sinaloae	5.8518	COIII.
	Artibeus lituratus	5.8422	
	Mormoops megalophylla	5.8374	
	Habromys lepturus	5.7848	
	Myotis keaysi	5.6148	
	Chiroderma villosum	5.5562	
	Tamandua mexicana	5.4845	
	Tylomys nudicaudus	5.4510	-
	Saccopteryx bilineata	5.2984	
	Macrotus mexicanus	5.2472	
	Sciurus aureogaster	5.2267	
	Baiomys musculus	5.2092	
	Rhogeessa tumida	5.1950	
	Sciurus deppei	5.1414	
	Dermanura watsoni	5.1338	
	Otonyctomys hatti	5.1338	
	Orthogeomys grandis	5.0556	
	Alouatta palliata	5.0457	
	Choeroniscus godmani	5.0457	
	Peropteryx macrotis	5.0457	1.1.1
	Pteronotus personatus	5.0266	
	Lontra longicaudis	4.9330	199
	Reithrodontomys mexicant	4.9120	
	Oryzomys rostratus	4.8681	
	Mimon cozumelae	4.8327	
	Pteronotus davyi	4.7943	
	Herpailurus yagouaroundi	4.7100	
	Glossophaga leachii	4.6849	
	Rhogeessa gracilis	4.6317	New York
	Sylvilagus brasiliensis	4.6317	
	Hodomys alleni	4.5155	
	Leopardus wiedii	4.4420	
	Peromyscus simulatus	4.4195	
	Sigmodon alleni	4.3707	
	Bassariscus sumichrasti	4.3110	
	Oryzomys fulvescens	4.3110	
	Diphylla ecaudata	4.3013	
	Oryzomys melanotis	4.2907	Yes
	Micronycteris microtis	4.2338	
90	Mazama americana	4.2274	
91	Microtus oaxacensis	4.2061	
	Rheomys thomasi	4.2061	14
	Oryzomys saturatior	4.2061	
	Myotis elegans	4.2024	1115
	Oligoryzomys fulvescens	4.1984	
	Natalus stramineus	4.0626	101.0
	Balantiopteryx io	4.0522	
	Nyctinomops laticaudatus	4.0522	1.1.1
	Tlacuatzin canescens	4.0119	
100	Odocoileus virginianus	3.9265	

Mammals	Epsilon	Conf.
101 Balantiopteryx plicata	3.8590	
102 Peromyscus leucopus	3.7994	
103 Sturnina Iudovici	3.7888	
104 Enchisthenes hartii	3.6929	
105 Vampyrodes caraccioli	3.6929	24.37
106 Eptesicus furinalis	3.6453	
107 Liomys pictus	3.6107	
108 Glossophaga commissaris	3.4861	
109 Lonchorhina aurita	3.4781	
110 Phyllostomus discolor	3.4781	
111 Peromyscus gymnotis	3.4516	
112 Anoura geoffroyi	3.4201	
113 Platyrrhinus helleri	3.3586	
114 Eumops bonariensis	3.3398	1.11
115 Sciurus variegatoides	3.3398	1000
116 Uroderma bilobatum	3.3373	22.3140
117 Lasiurus intermedius	3.2197	
118 Lasiurus ega	3.1739	
119 Peromyscus megalops	3.1410	1. 1. 1. 1.
120 Eumops glaucinus	3.0564	
121 Urocyon cinereoargenteus		
122 Procyon lotor	2.9502	1000/6251
123 Hylonycteris underwoodi	2.9343	
124 Rhynchonycteris naso	2.8580	
125 Eptesicus brasiliensis	2.8106	
126 Myotis albescens	2.8106	
127 Lophostoma evotis	2.8106	
128 Tapirus bairdii	2.8106	DONNE.
129 Vampyrum spectrum	2.8106	
130 Marmosa mexicana	2.7731	Yes
131 Peromyscus furvus	2.7731	
132 Myotis velifera	2.5757	
133 Spilogale putorius	2.5411	
134 Microtus mexicanus	2.5268	1.14.17
135 Dasypus novemcinctus	2.4725	Sec. 35-5
136 Myotis nigricans	2.4704	1.198
137 Lophostoma brasiliense	2.4407	
138 Diclidurus albus	2.4407	
139 Sciurus niger	2.4407	
140 Leptonycteris curasoae	2.4268	13/21/
141 Nyctomys sumichrasti	2.4026	1000
142 Sigmodon mascotensis	2.3815	
143 Alouatta pigra	2.3374	Sec. States
144 Peromyscus melanophrys	2.2204	1000
145 Dermanura tolteca	2.1920	Constant and
146 Trachops cirrhosus	2.1663	12.34
147 Bauerus dubiaquercus	2.1612	1000
148 Spilogale pygmaea	2.1612	128 8 10
149 Leptonycteris nivalis	2.1402	
150 Sylvilagus floridanus	2.1002	
	2002	

Biotic facilitation seems to be the norm. Species are not distributed randomly

Predictive Model for potential hosts of ZIKV

Mammals with most statistically significant geographic overlap with Aedes Aegypti

Rank	Mammal	epsilon	Rank	Mammal	epsilon		Chris
1	Glossophaga soricina	12.78	38	Dasypus novemcinctus	7.11		Risk map for 🗖
2	Molossus rufus	11.99	39	Sigmodon hispidus	7.02		
3	Artibeus jamaicensis*	11.68	40	Uroderma bilobatum	6.82		A a day A agreeti
4	Liomys pictus	11.06	41	Leptonycteris curasoae	6.75		Aedes Aegypti
5	Oryzomys couesi	11.04	42	Carollia perspicillata	6.71		
	Carollia subrufa	10.49	43	Centurio senex	6.61		from a biotic
White and the second	Sturnira lilium	10.28	44	Sciurus colliaei	6.59	1 we to see and "	
	Artibeus lituratus*	9.91		Lontra longicaudis	6.49		model for
	Choeroniscus godmani	9.42	46	Didelphis marsupialis	6.49	Co-occurrence	
	Liomys salvini	9.33	47	Cratogeomys bulleri	6.35		$D(C \mid \mathbf{V})$
	Oligoryzomys fulvescens	9.15	48	Carollia sowelli*	6.27	measure	P(C X)
	Dermanura phaeotis	9.12		Myotis elegans	6.12	er and a	
	U	9.06	50	Myotis nigricans*	6.06		
	Pteronotus personatus	9.05		Sigmodon arizonae	6.00	A High	
	Baiomys musculus	8.97	52	Rhynchonycteris naso	5.95		
16	1 0	8.80	53	Tlacuatzin canescens	5.87	Probability High	
Contraction of the second	Didelphis virginiana	8.58	54	Leopardus pardalis	5.84	Low	
	Pteronotus parnellii*	8.58	55	Caluromys derbianus Geoportal Leafle Molossus molossus	t 5.78		3/ 110 1/ 1 5/ 2
	Orthogeomys hispidus	8.53			5.76 5.76	Localities of A. Aegypti	
	0	8.52 8.51	57	Oryzomys rostratus	5.76	\mathbf{X}	
21 22	Desmodus rotundus	8.23	58 50	Osgoodomys banderanus Myotis carteri	5.66	Positives for	⊙ ► 8
22	Saccopteryx bilineata	8.23 8.22	59 60	Myous curieri Micronycteris microtis	5.52		
23	Lasiurus intermedius	8.15		Sylvilagus brasiliensis	5.47	DENGUE • •	
	Phyllostomus discolor	8.12		Sylvilagus floridanus	5.37		
	Philander opossum	8.10	63	Spermophilus annulatus	5.36		Consultant Information
27	Peromyscus gymnotis	7.90	64	Peromyscus leucopus	5.30		Complex Inference
	Balantiopteryx plicata	7.81	65	Conepatus leuconotus	5.30		
	Eptesicus furinalis	7.69	66	Chaetodipus pernix	5.27		Network for
	Pteronotus davyi	7.55		Sciurus yucatanensis	5.23		
31	Dermanura tolteca	7.48		Sigmodon mascotensis	5.13		Aedes aegypti and
32	Sciurus variegatoides	7.48	69	Eira barbara	5.12		neues acgypti and
	Mormoops megalophylla	7.45	70	Ateles geoffroyi	5.11		
34	Oryzomys melanotis	7.42	71	Neotoma phenax	5.07		Aedes albopictus
35	Artibeus intermedius	7.40	72	Noctilio leporinus	5.06		•
36	Chaetodipus artus	7.20	73	Reithrodontomys fulvescens	4.95		
37	Nasua narica	7.18					

306

De

Conclusions

- * Prediction of risk factors and interventions for EIDs is of huge public health importance
- EIDs are Complex Adaptive Systems
 - Multi-factorial, multi-scale, multi-discipline —> multi-interaction
 - There are too many interactions to observe directly
 - Standard mathematical techniques model only a few factors
- The Data Revolution has made available large amounts of data with which their complex, adaptive nature may be better modelled
 - Spatio-temporal data about organisms, relative to each other (biotic) and relative to the environment (abiotic), can be used to deduce the nature of their interactions
 - * This can be done at the niche level (one to many) and at the community level (many to many)
 - Obtaining and integrating data is a huge challenge political and technical
- The optimal use of this data requires innovation in modelling using multiple techniques from SIR-type models to agent-based modelling and the use of advanced machine learning and AI techniques.
- Our work on various zoonosis show the utility of innovative approaches that use data of arbitrary spatial resolution and format, such as predicting host range.
 - * Importance of a Data-Predictions-Experiment production line approach to emerging diseases
 - Importance of a multi-pathogen, multi-vector, multi-host approach