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The Complexity of Disease 
and the Need for 

Transdisciplinarity 

From the micro to the macro and back again
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What are our goals?
The Santa Clause list

• Where will diseases emerge or re-emerge – why, when, what can 
we do about it and how do we know it’s working?

• We want to predict, for instance
• Disease reservoirs and vectors, their interactions and their relative    

importance
• Spatio-temporal behaviour of disease and associated risk factors
• Dispersal characteristics 
• Socio-demographic/economic risk factors
• Genetic susceptibility (at all levels)

• We want an integrated systems analysis that takes into       
account the complex nature of disease and we want to   
understand



Known reservoirs
Known vectors
Known cases
Known risk factors 



How do we model what’s “under the water”?

Known reservoirs
Known vectors
Known cases
Known risk factors 

Unknown reservoirs
Unknown vectors
Unknown cases
Unknown risk factors 
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?The Data Mining Approach

Really, what is it?
Just good old fashioned modeling, statistical inference, but with a few twists…
Many variables/dimensions and multi-scale
Electronic format, “Unintentional” data
All necessary for modeling complex phenomena



But what are we 
going to mine…!



 Collection data
 Ecological niche data
 Ecological niche model data
 Socio-economic data
 Socio-demographic data
 Phenotypic data
 Vegetable and crop cover 
 Geographical data
 Medical and public health data…

The data are represented in space and 
time – spatial data mining

Anything and 
everything!

(A democracy of the data – universal franchise!)



• Different sources

– Different location, data base, access,…

• Different data type – categorical, metric 

• Different spatial resolution 

• Explicit – e.g., pixel by pixel in environmental layers

• Implicit – 30,000,000 data points versus 30

– Quality versus quantity

– Abiotic versus biotic

But all data are not created 
equal…

Need to avoid the tyranny of the majority and protect minority rights!
Also, we need to be able to compare apples with apples!



• But the real Niche Space of a disease is VERY 
big!

• Where do we start?

• With the biotic…

• With the “ecological” part, reservoirs and 
vectors and all that…



Mammal collections

Lutzomyias collections

Clear?



You can judge a man 

by his “friends”
or his “enemies”, or “parasites”, 
or “prey” or “predators” or…



Food web associated with Cod for 
northwest Atlantic

Visualization of known interactions
at the species level 

No spatio-temporal input

Author(s):
Prof. David Lavigne

Institution:
Natural Sciences and Engineering Research 
Council

Typical Ecological Network



• Take nodes to be…

– Species, other taxonomic or phylogenetic  groupings, groupings by phenotypic 
characteristics,  

• Take links to be a statistical measure of spatial (temporal) co-occurrence 

– P(Y|X), epsilon(Y|X), P(A,B|C,D), epsilon(Z|X,Y)

– What is a high/low degree of co-occurrence?

– What spatial (temporal) resolution? (When do things co-occur?) 

Using Networks to Infer 
Reservoir-Vector Interactions
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Who’s friends with Lutzomyias?

All data before 2008 used
All Mexico



Predicting Reservoirs

The 150 (out of 427) “best friends” of Lutzomyia as a genera.
The model works on known results. 



Field work :
samples 

Solutions:
 Decision support systems
 Treatments
 Intelligent software

Close relationship with
public health authorities 
and private sector

Data Mining: 
Predictive models,
Risk factors

Laboratory analysis

Five groups distributed
throughout Mexico
DF, Chiap., NL, Jal., Tab.

Two laboratories

Links to IMSS and INSP

But how to test it…? 
The Emerging Disease production 
line

Requires large, well-organized
interdisciplinary team

Over 1200 mammals
collected from over
70 species

PCR tests on samples
for different diseases



Predicting Reservoirs



All data before 2008 used
All Mexico



• Predicted and confirmed 21 new species of mammal as carriers of 
Leishmania in Mexico (about 30% of those tested)

• 12 of them are bats, identified for the first time in Mexico

• Squirrels identified as carriers

• Changes the picture for control of Leishmania totally; Leishmania and 
Lutzomyias are eclectic in their host source. Linnean classification is 
NOT ecologically relevant 

• So we can see that the biotic (mammals/food)part of the Niche Space 
for Leishmaniasis is important. What about other factors?

– Abiotic – Worldclim

– Vegetation/landcover 

Modelling Works!



Modelling the Niche Space of Leishmaniasis 
(well, Lutzomyias really)



Modelling the Niche Space of Leishmaniasis 
(well, Lutzomyias really)



Lutzomyia Risk Maps from 
Different Niche models



Lutzomyia Risk Maps from 
Mammals and Landcover

Biased Lutzomyia collections. 
Our modeling indicated that 
there were potential biases. 



Making the Network more complex:
Potential patterns of dispersal



Generating dispersal scenarios

A and B
Human settlement
and tropical forest

C, D and E
Human settlement,
crops, tropical and 
temperate forest



Drilling down to a more local level…
The biotic network for Tabasco

C. Gonzalez, Universidad de los Andes, Bogota



And now from macro to micro...

How do pathogens manage to

thrive in a large range of hosts?

How do they generate and

maintain phenotypic diversity? 
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• Emerging zoonoses are complex SYSTEMS

– They are also composed of complex SUB-SYSTEMS

– Many variables are relevant and the micro and the macro are intimately 
related

– Their study requires potentially large, interdisciplinary teams

• We CANNOT do “science” (separate, controlled  experiments) to determine the effect of every variable 
(No PV=RT)

• The world is awash with data

– Much of this data can be used to (indirectly) infer 
interactions/relationships/risk factors

– E.g. Predicting the distribution of Lutzomyia, a model with about 500 
variables, using point collection data

– Inference networks are a great way of understanding and visualising potential 
biotic/abiotic/other interactions 

Conclusions



Conclusions

 Modeling at a true systems level IS possible

Difference between prediction and understanding

Correlation versus causation

Phenomenological versus “fundamental” models
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