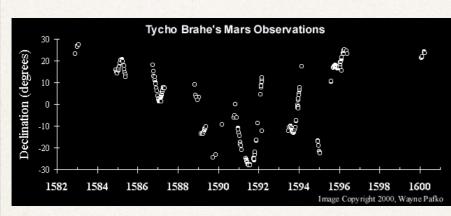


Predictive modeling of zoonoses using spatial data

SPECIES Sistema Para la ExploraCión de Informacion ESpacial

Chris Stephens


C3-Centro de Ciencias de la Complejidad y Instituto de Ciencias Nucleares, UNAM Workshop on Arboviruses - INSP 09/02/2016

Inferring Interactions from Spatial Data... A famous historical antecedent Data —> Phenomenology —> Taxonomy —> Theory

Data

Isaac Newton computed the acceleration of a planet moving according to Kepler's first and second law.

- 1 The *direction* of the acceleration is towards the Sun.
- 2 The *magnitude* of the acceleration is inversely proportional to the square of the planet's distance from the Sun (the *inverse square law*).

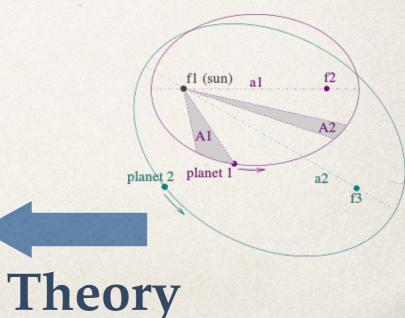
This implies that the Sun may be the physical cause of the acceleration of planets. Newton defined the force acting on a planet to be the product of its mass and the acceleration. So:

- 1 Every planet is attracted towards the Sun.
- 2 The force acting on a planet is in direct proportion to the mass of the planet and in inverse proportion to the square of its distance from the Sun.

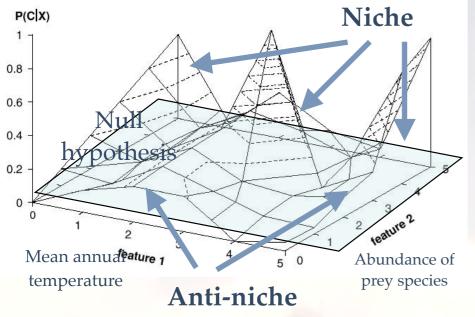
The Sun plays an unsymmetrical part, which is unjustified. So he assumed, in Newton's law of universal gravitation:

- 1 All bodies in the solar system attract one another.
- 2 The force between two bodies is in direct proportion to the product of their masses and in inverse proportion to the square of the distance between them.

As the planets have small masses compared to the Sun, the orbits conform approximately to Kepler's laws. Newton's model fits actual observations more accurately.


F = ma $F = GMm/r^2$

Phenomenology


Kepler's Laws

- 1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
- 2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- 3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.

What do we want to predict? C = (C1, C2, C3, ..., CN)the presence, or abundance, or,... of one or more populations or taxa

S(C|X)**Risk score**

What affects it? The "niche" X = (X1, X2, X3, ..., XM)

A large part of the complexity is in the multi-factoriality of both C and X. Adaptation is inherent in the fact that P(C | X)can change in time.

X = X(sd) + X(se) + X(n) + X(ev) + X(g) + X(af) + X(hm) + X(i) + X(sp) + ...

Macro-Climactic factors

Micro-Climatic factors

Hydrography

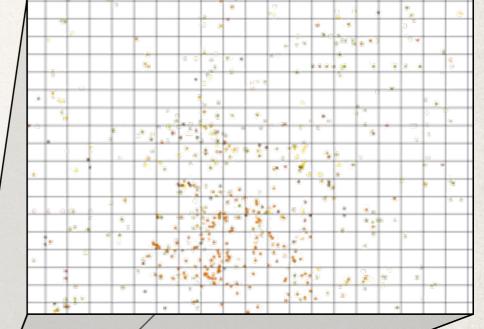
Prey species

Human activity

Behavioural characteristics

Phenotypic characteristics Competitor species

Predator species


Problems of co-dependence and causality

And the data? Where are the "Brahes"? There's lots of them!

Normally data mining takes place in a "categorical" space (the equivalent in ecology is a niche space). However, most ecological data is spatio-temporal at multiple scales. Spatial data mining is much less developed than standard data mining.

- Collection data SNIB, CONABIO
- Ecological niche data
- Ecological niche model data
- Socio-economic data
- Socio-demographic data
- Phenotypic data
- Vegetable and crop cover
- Geographical data
- Medical and public health data...

The data are represented in space and time – spatial data mining

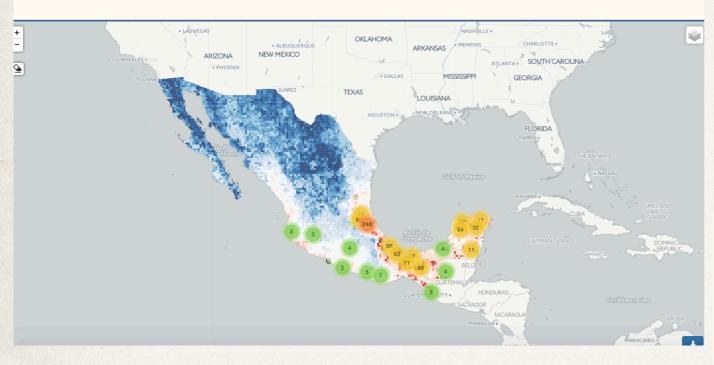
Problems with spatial data:

Different sources

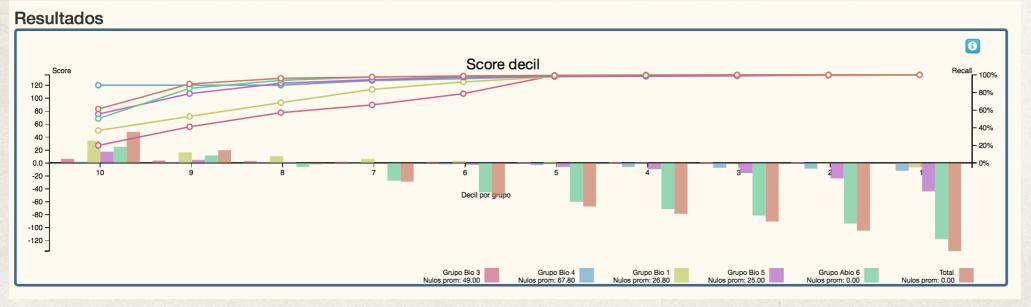
Different location, data base, access,...

Different data types

categorical, metric, continuous, discrete,...


Different spatial resolution

Explicit – e.g., pixel by pixel in environmental layers Implicit – 30,000,000 data points versus 30 "Quality" (e.g. Phenotypic characteristic) versus "quantity" Abiotic versus biotic



Ecological Niche for vectors, hosts, pathogens, cases,... from SPECIES

Niche and anti-niche for Triatoma Dimidiata

1 Decil	💵 🕄 Variable	10	 Epsilon 	15	🚯 Score	10	🕄 % Occ por decil	J∲
10	Carollia brevicauda		14.49		2.18		45.16%	
10	Glossophaga soricina		14.20		1.62		32.43%	
10	Artibeus jamaicensis		14.20		1.59		31.70%	
10	Molossus rufus		13.89		2.20		48.55%	
10	Myotis keaysi		13.41		2.51		61.54%	
10	Eptesicus furinalis		13.27		2.75		51.85%	
10	Diphylla ecaudata		12.98		2.69		60.71%	
10	Mimon cozumelae		12.95		3.61		75.00%	
10	Myotis nigricans		12.70		2.38		62.35%	
10	Desmodus rotundus		12.59		1.52		31.22%	
10	Dermanura tolteca		12.30		1.85		46.08%	
10	Rhogeessa tumida		12.07		2.41		51.35%	
10	Sturnira parvidens		11.59		1.55		33.82%	

Both abiotic and biotic factors included

Gulf of Mexico

NICARAGI


Vector-host network

for Chagas

Now for Communities...

You can judge a man by his "friends"

or his "enemies", or "parasites", or "prey" or "predators" or ...

	Mammals	Epsilon	Conf.
1	Eira barbara	10.1683	Com.
-		9.3649	
	Rhogeessa aeneus		
	Artibeus intermedius	9.1628	Yes
	Reithrodontomys gracilis	8.8921	res
	Carollia sowelli	8.8303	Yes
	Heteromys gaumeri	8.8000	res
	Peromyscus mexicanus	8.7859	Vee
	Heteromys desmarestianu	8.7164	Yes
	Molossus rufus	8.6277	
	Glossophaga soricina	8.5713	
	Carollia perspicillata	8.5030	
	Orthogeomys hispidus	8.3468	
	Pteronotus parnellii	8.1632	
	Desmodus rotundus	8.1519	
	Dasyprocta mexicana	8.1128	
	Sturnira lilium	8.0290	-
	Dermanura phaeotis	8.0055	
	Dasyprocta punctata	7.9678	1.1.1.1
	Oryzomys couesi	7.7253	
	Potos flavus	7.7246	
	Conepatus semistriatus	7.6879	1000
	Ototylomys phyllotis	7.5587	Yes
	Ateles geoffroyi	7.4787	
24	Cryptotis magna	7.4207	1000
	Cuniculus paca	7.3220	1.10
26	Lampronycteris brachyotis	7.2852	
27	Sigmodon hispidus	7.2805	Yes
	Peromyscus yucatanicus	7.2486	Yes
29	Oryzomys chapmani	7.1242	
	Didelphis virginiana	7.1150	
	Peromyscus melanocarpus	7.0260	
32	Microtus umbrosus	6.9630	
	Thyroptera tricolor	6.9630	
	Nasua narica	6.8953	
	Megadontomys cryophilus	6.6830	
	Oryzomys alfaroi	6.6816	1.1
	Sorex veraepacis	6.6797	
	Carollia subrufa	6.6316	1.1.1.1.1
	Peromyscus aztecus	6.6173	
	Didelphis marsupialis	6.4390	Yes
	Sciurus yucatanensis	6.3865	
	Philander opossum	6.2546	
	Habromys ixtlani	6.1120	
	Microtus waterhousii	6.1120	10.00
	Pteronotus rubiginosus	6.1120	100 STAN
	Reithrodontomys microdor	6.0967	
	Coendou mexicanus	6.0268	San Carl
	Centurio senex	6.0076	1.
	Artibeus jamaicensis	5.9786	_
	Glossophaga morenoi	5.8847	
50	clessophaga morenor	0.0047	

1.19	Mammals	Epsilon	Conf.
51	Molossus sinaloae	5.8518	
	Artibeus lituratus	5.8422	
	Mormoops megalophylla	5.8374	1000
	Habromys lepturus	5.7848	
	Myotis keaysi	5.6148	3-35 A.
56	Chiroderma villosum	5.5562	
	Tamandua mexicana	5.4845	
	Tylomys nudicaudus	5.4510	1997
	Saccopteryx bilineata	5.2984	
	Macrotus mexicanus	5.2472	
	Sciurus aureogaster	5.2267	
	Baiomys musculus	5.2092	
	Rhogeessa tumida	5.1950	
	Sciurus deppei	5.1414	1.000
	Dermanura watsoni	5.1338	
	Otonyctomys hatti	5.1338	
	Orthogeomys grandis	5.0556	
	Alouatta palliata	5.0457	
	Choeroniscus godmani	5.0457	_
	Peropteryx macrotis	5.0457	
	Pteronotus personatus	5.0266	
	Lontra longicaudis	4.9330	
	Reithrodontomys mexicanu	4.9120	
	Oryzomys rostratus	4.8681	
	Mimon cozumelae	4.8327	1000
	Pteronotus davyi	4.7943	
	Herpailurus yagouaroundi	4.7100	1.1
	Glossophaga leachii	4.6849	
	Rhogeessa gracilis	4.6317	
	Sylvilagus brasiliensis	4.6317	1.1
	Hodomys alleni	4.5155	
	Leopardus wiedii	4.4420	
	Peromyscus simulatus	4.4195	1.000
	Sigmodon alleni	4.3707	1999
	Bassariscus sumichrasti	4.3110	
	Oryzomys fulvescens	4.3110	100
	Diphylla ecaudata	4.3013	23.54
	Oryzomys melanotis	4.2907	Yes
	Micronycteris microtis	4.2338	
	Mazama americana	4.2274	
	Microtus oaxacensis	4.2061	
	Rheomys thomasi	4.2061	
	Oryzomys saturatior	4.2061	
	Myotis elegans	4.2024	1.6.1.5
	Oligoryzomys fulvescens	4.1984	162.1
		4.0626	
90	Inatalus stramineus		
	Natalus stramineus Balantiopteryx io		
97	Balantiopteryx io	4.0522	
97 98			

		Mammals	Epsilon	Conf.
]	101	Balantiopteryx plicata	3.8590	
		Peromyscus leucopus	3.7994	
1		Sturnina ludovici	3.7888	
		Enchisthenes hartii	3.6929	
		Vampyrodes caraccioli	3.6929	24.12
		Eptesicus furinalis	3.6453	
		Liomys pictus	3.6107	
		Glossophaga commissaris		
		Lonchorhina aurita	3.4781	
1		Phyllostomus discolor	3.4781	
		Peromyscus gymnotis	3.4516	
		Anoura geoffroyi	3.4201	
		Platyrrhinus helleri	3.3586	
		Eumops bonariensis	3.3398	
1		Sciurus variegatoides	3.3398	
-		Uroderma bilobatum	3.3398	
-		Lasiurus intermedius	3.2197	
-		Lasiurus ega	3.1739	
			3.1739	
		Peromyscus megalops	3.0564	
-		Eumops glaucinus		
		Urocyon cinereoargenteus		
•		Procyon lotor	2.9502	
		Hylonycteris underwoodi	2.9343	
		Rhynchonycteris naso	2.8580	
-		Eptesicus brasiliensis	2.8106	
		Myotis albescens	2.8106	
		Lophostoma evotis	2.8106	
		Tapirus bairdii	2.8106	
		Vampyrum spectrum	2.8106	
		Marmosa mexicana	2.7731	Yes
		Peromyscus furvus	2.7731	
		Myotis velifera	2.5757	
		Spilogale putorius	2.5411	
		Microtus mexicanus	2.5268	
		Dasypus novemcinctus	2.4725	
		Myotis nigricans	2.4704	
		Lophostoma brasiliense	2.4407	
		Diclidurus albus	2.4407	
		Sciurus niger	2.4407	
	140	Leptonycteris curasoae	2.4268	1.46.1
	141	Nyctomys sumichrasti	2.4026	
		Sigmodon mascotensis	2.3815	
		Alouatta pigra	2.3374	
		Peromyscus melanophrys	2.2204	
		Dermanura tolteca	2.1920	
		Trachops cirrhosus	2.1663	1.3.
		Bauerus dubiaquercus	2.1612	1000
		Spilogale pygmaea	2.1612	12.2.5
		Leptonycteris nivalis	2.1402	
1		Sylvilagus floridanus	2.1002	-

Only approximately 50 (2.5%) mammals from the Americas have been identified as hosts of Leishmania

0

0

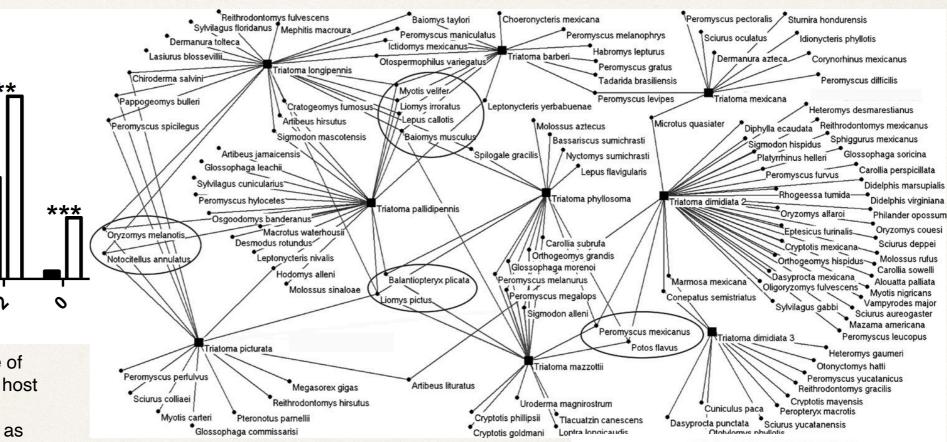
In México only 8 of 419 (2.1%) had been identified as hosts before our work

Species	3	Negative	Positive	Total	% positive	(95 For
Carollia sowelli	8.83	43	2	45	4.4	-1 - 14
Heteromys gaumeri*	8.8	5	0	5	0	-15 - 29
Peromyscus mexicanus	8.79	115	6	121	5	2 - 11
Heteromys desmarestianus*	8.72	30	0	30	0	-2 - 16
Molossus rufus Glossophaga soricina	8.63 8.57	1 19	0 7	1 26	0 26.9	-42 - 56 -3 - 16
Carollia perspicillata	8.5	8	0	8	0	-11 - 24
Pteronotus parnellii	8.16	4	0	4	0	-18 - 31
Desmodus rotundus	8.15	13	1	14	7.1	-6 - 20
Sturnira lilium	8.03	56	7	63	11.1	1 - 13
Artibeus phaeotis	8.01	35	1	36	2.8	-1 - 15
Oryzomys couesi	7.73	2	0	2	0	-28 - 41
Ototylomys phyllotis*	7.56	9	1	10	10	-9 - 22
Sigmodon hispidus* Peromyscus yucatanicus*	7.28 7.25	36 3	4 0	40 3	10 0	-1 - 14 -22 - 35
Didelphis virginiana	7.12	3	0	3	0	-22 - 30
Didelphis marsupialis	6.44	11	0	11	0	-8 - 21
Philander opossum	6.25	6	1	7	14.3	-12 - 25
Centurio senex	6.01	1	0	1	0	-42 - 50
Artibeus jamaicensis	5.98	81	5	86	5.8	1 - 12
Artibeus lituratus	5.84	38	3	41	7.3	-1 - 14
Myotis keaysi	5.61	2	0	2	0	-28 - 4
Chiroderma villosum	5.56	5	0	5	0	-15 - 29
Saccopteryx bilineata	5.3	1	0	1	0	-42 - 50
Sciurus aureogaster	5.23	71 2	8 0	79 2	7.3 0	1 - 12 -28 - 4
Baiomys musculus Artibeus watsoni	5.21 5.13	2	0	2	0	-28 - 4
Choeroniscus godmani	5.05	10	3	13	23.1	-7 - 20
Pteronotus personatus	5.03	3	1	4	25	-18 - 3
Reithrodontomys mexicanus	4.91	1	0	1	0	-42 - 50
Oryzomys rostratus	4.87	22	1	23	4.3	-4 - 17
Micronycteris microtis	4.23	1	0	1	0	-42 - 50
Oligoryzomys fulvescens	4.2	6	0	6	0	-13 - 27
Peromyscus leucopus	3.8	22	4	26	15.4	-3 - 16
Sturnira ludovici	3.79	24	1	25	4	-3 - 17
Vampyrodes caraccioli	3.69	1	0	1	0	-42 - 50
Liomys pictus	3.61 3.49	47 2	1 6	48 8	2.1 75	0 - 14 -11 - 24
Glossophaga commissarisi Lonchorhina aurita	3.49	1	0	8 1	0	-11 - 24
Phyllostomus discolor	3.48	0	1	1	100	-42 - 50
Platyrrhinus helleri	3.36	5	0	5	0	-22 - 33
Uroderma bilobatum	3.34	4	0	4	0	-18 - 3
Urocyon cinereoargenteus	2.97	1	0	1	0	-42 - 50
Procyon lotor	2.95	1	0	1	0	-42 - 50
Myotis velifer	2.58	3	0	3	0	-18 - 3
Microtus mexicanus	2.53	16	0	16	0	-6 - 19
Myotis nigricans	2.47	2	0 1	2 2	0 50	-28 - 4 -28 - 4
Leptonycteris yerbabuenae Reithrodontomys fulvescens	2.43 2.08	20	0	2 20	0	-28 - 4
Neotoma mexicana	1.99	5	0	5	0	-15 - 29
Eptesicus fuscus	1.82	1	0	1	0	-42 - 50
Peromyscus levipes	1.34	1	0	1	0	-42 - 50
Sorex saussurei	1.29	3	0	3	0	-22 - 3
Osgoodomys banderanus	1.21	9	0	9	0	-10 - 23
Liomys irroratus	1.16	8	0	8	0	-11 - 24
Myotis auriculus	0.22	2	0	2	0	-28 - 4
Tadarida brasiliensis	-0.09	1	0	1 2	0	-42 - 50
Peromyscus hylocetes Antrozous pallidus	-0.28 -0.34	2 1	0 0	2	0 0	-28 - 4 -42 - 50
Peromyscus zarhynchus	-0.34	2	0	2	0	-28 - 42
Chaetodipus hispidus	-0.40	4	0	4	0	-18 - 3
Peromyscus pectoralis	-0.73	2	0	2	0	-28 - 4
Neotomodon alstoni	-0.9	17	0	17	0	-5 - 19
Baiomys taylori	-1.16	10	3	13	23.1	-7 - 20
Chaetodipus nelsoni	-1.24	3	0	3	0	-22 - 35
Neotoma micropus	-1.27	16 58	0 2	16 60	0	-6 - 19 0 13
Peromyscus maniculatus Peromyscus eremicus	-1.37 -1.41	58 0	2	60 1	3.3 100	0 - 13 -42 - 56
Perognathus flavus	-1.41	1	0	1	0	-42 - 36
Dipodomys merriami	-2.01	1	0	1	0	-42 - 56
- spouonijs morrianti	2.01		U	1	v	12 - 50

(())3

Model Validation

- 922 individuals from 70 species were collected over a period of 18 months
- We predicted and confirmed 22 new species of host of Leishmania in México
- 13 of them are bats, identified for the first time in México
- Squirrels identified as hosts
- 34% of the species collected confirmed as hosts
- Average prevalence was 6.7%
- No species could be rejected as a host at the 95% confidence level
- Changes radically the panorama for control of Leishmania;
- Leishmania and Lutzomyias are generalists
- Linnean classification is not ecologically relevant



From networks to predictive models:

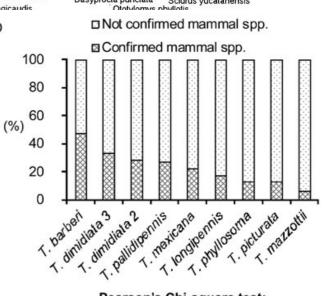
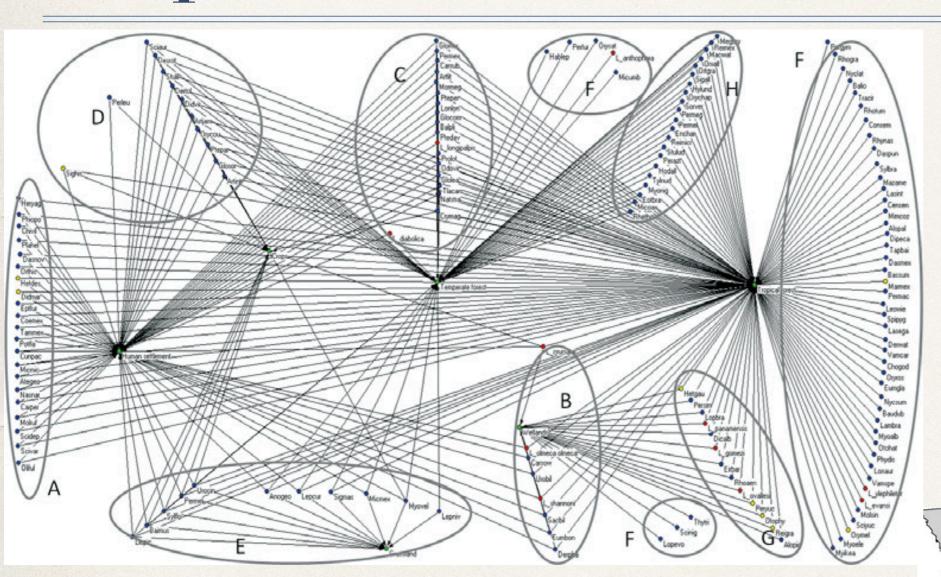

hagas T. cruzi positives 50 -T. cruzi non positives 40 ** Frequency (%) 30 *** 20 *** *** **10** r 0 ծ 6 D. 0 **Epsilon**

Figure 2 Evaluation of the performance of the interaction model: T. cruzi potential host species are those mammals that were independently reported in the literature as testing positive for natural infections by T. cruzi. mean P-values < 0.001, and are Pvalues < 0.01.

D

Triatoma barberi exhibits the best competence to transmit T. cruzi having the highest natural infection index, the highest frequency of trypomastigotes and the shortest time for defecation among the main vectors of Chagas disease in Mexico (Salazar-Schettino et al. 2005). Likewise, T. dimidiata and T. pallidipennis are recognized by their high degree of competence among the main vectors of Chagas disease in Mexico (Martínez-Ibarra and Novelo-López, 2004; Salazar- Schettino et al. 2005; Dorn et al. 2007). Even though there are no differences in the competence of distinct lineages of T. dimidiata, there are differences in their spatial dynamics (Herrera-Aguilar et al. 2009). Triatoma dimidiata 3 participates in the flow between sylvatic and domestic environments whereas T. dimidiata 2 does not, being restricted to only domestic habitats exclusively (Herrera-Aguilar et al. 2009).



Pearson's Chi-square test: $X^2 = 70.419$, p = 4.055e-12

Dispersion of zoonoses

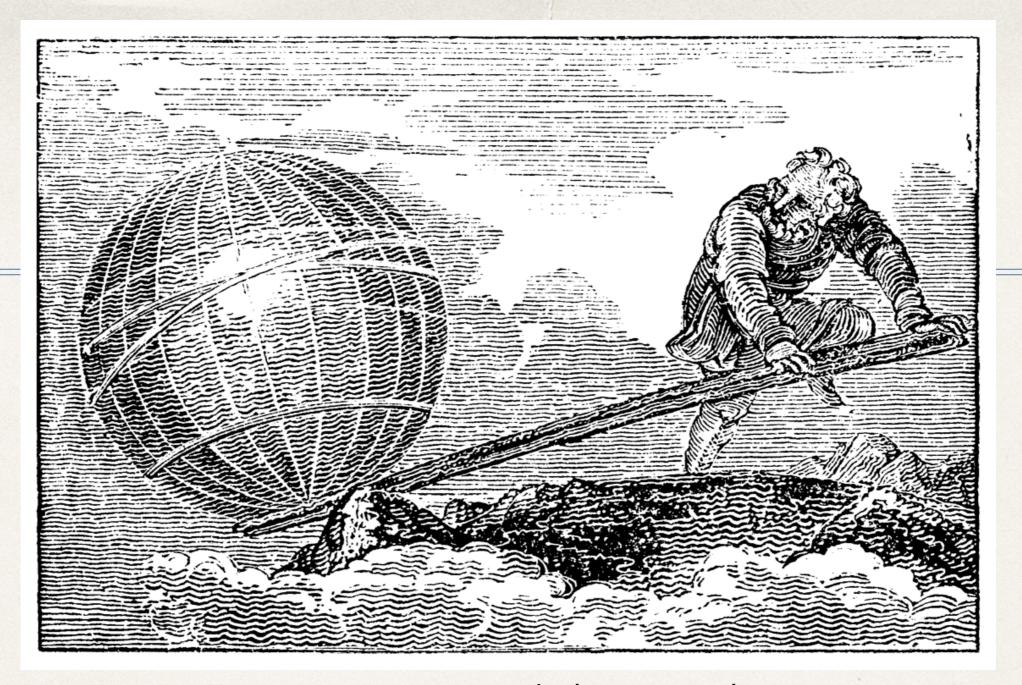
Assemblages of vectors and hosts of Leishmaniasis associated with different habitats

Scenario 2

Can determine which potential hosts have overlap with habitats favoured by the vector without having direct overlap between vector and host

—> Disperal scenarios

Conclusions


- Zoonoses are Complex Adaptive Systems
 - There are far too many relevant ecological interactions associated with a zoonosis to be experimentally identified and quantified
- The data associated with where and when things "are" (position and time), and what "things" (vectors, hosts, cases,...) are, can potentially tell us an enormous amount about "ecological" interactions
 - The methodology we have developed and the SPECIES platform allow us to infer / predict:
 - The full ecological niche (and anti-niche) of "things"
 - The network of the community / ecosystem in which they interact
- The labels for "things" family, genus, species, DTU, population, sylvatic, peri-domestic, competent, guild, cases, biomarkers etc. - allow us to detect heterogeneity in the interactions
 - * The more labels we have the more we can compare different hypotheses
 - More labels means more data: clinical cases, phylogenetic,...
 - Data has to be incorporated in the SPECIES platform

Conclusions

- * Field and laboratory work is necessary to
 - Validate the predictive models
 - * New hosts, new vectors,...
 - * Validate data
 - Detect and correct data biases
- * Leishmaniasis and Chagas are "generalists" multi-vector, multi-host
 - Consistent with genetically very plastic pathogens
 - * Genotypic variation has to leave phenotypic footprints
- * There exists an "INFECTOME"
 - * Many diseases are very "multi" multi-pathogen (e.g., DTUs), multi-vector, multi-host etc.
 - Test for multiple pathogens
 - * What pathogens are associated with which hosts?
 - * How do pathogens interact?
- * It is important to maintain development of the SPECIES platform
 - Develop further its functionality
 - * Add more data layers: public health, socio-economic/socio-demographic,

δώς μοι πά στώ καὶ τὰν γάν κινάσω Give me a place to stand on and I'll move the earth Give me enough data and I'll predict anything

The Data Revolution will revolutionise our ability to model and understand disease

	Publications
	Competitive interactions between felid species may limit the southern distribution of
	bobcats Lynx rufus
	V Sánchez-Cordero, D Stockwell, S Sarkar, H Liu, CR Stephens,
	Ecography 31 (6), 757-764, 2008
	Using biotic interaction networks for prediction in biodiversity and emerging diseases
Grupo de Trabajo	CR Stephens, JG Heau, C González, CN Ibarra-Cerdeña, PLoS One 4 (5), e5725, 2009
	Exploratory analysis of the interrelations between co-located boolean spatial features
	using network graphs
<u>C3 - Centro de Ciencias de la Complejidad,</u>	R Sierra, CR Stephens
UNAM; Instituto de Biología, UNAM;	International Journal of Geographical Information Science 26 (3), 441-468, 2012
	Constructing ecological networks: a tool to infer risk of transmission and dispersal of
CONABIO; Facultad de Medicina, UNAM	Leishmaniasis
	C González-Salazar, CR Stephens
1 Dr. Christopher R. Stephens	Zoonoses and public health 59 (s2), 179-193, 2012
	Comparing the relative contributions of biotic and abiotic factors as mediators of species' distributions
2 Dr. Raúl Sierra Alcocer	C González-Salazar, CR Stephens, PA Marquet
4 Dr. Constantino González Salazar	Ecological Modelling 248, 57-70, 2013
	Leishmania (L.) mexicana Infected Bats in Mexico: Novel Potential Reservoirs
5 M. en C. Enrique del Callejo	M Berzunza-Cruz, Á Rodríguez-Moreno, G Gutiérrez-Granados,
6 M. en C. Everardo Robredo	PLoS neglected tropical diseases 9 (1), e0003438-e0003438, 2015
7 Lic. Juan Carlos Salazar Carrillo	Predicting the potential role of non-human hosts in Zika virus maintenance
7 LIC. Juan Carlos Salazar Carrillo	C González-Salazar, CR Stephens and V. Sanchez-Cordero accepted for publication in Eco-health
	UNDERSTANDING TRANSMISSIBILITY PATTERNS OF CHAGAS DISEASE THROUGH COMPLEX
	VECTOR-HOST NETWORKS
	Laura Rengifo-Correa, Constantino González-Salazar, Juan J. Morrone, Juan Luis Téllez-Rendón,
	Christopher Stephens, Parasitology (2017) Jan 12:1-13. doi: 10.1017/S0031182016002468 Can you judge a disease host by the company it keeps? Predicting disease hosts
	and their relative importance using complex networks
	CR Stephens et al, PLoS Neglected Tropical diseases, (2016)10(10): e0005004. doi:10.1371/
	journal.pntd.0005004

Publications