
Modelling Vector-borne Disease 
as a Complex Adaptive System: 
Challenges and Potential Solutions 

Chris Stephens
C3-Centro de Ciencias de la Complejidad y Instituto de Ciencias Nucleares, UNAM 
Mexico-US Forum Arbovirus Disease Research: Priorities for Collaboration and Partnership: Nov. 28th-30th 2017

 



The Challenges



Demographers
EpidemiologistsEntomologists Mammologists

Ecologists

Perinatologists
Infectologists

Virologists
GeneticistsPublic Health

Sociologists
Anthropologists

Philosophers

Chemist
Biochemists

Politicians 
Civil servants

Bioinformatitians
Modellers

Transporte

Complex
Adaptive
System

Arbovirus
Multifactorial

Multiscale
Multiple interactions



They are dynamical and  
adaptive

N
um

be
r o

f c
as

es
 x

 1
00

0

0

40

80

120

160

       Time in weeks

0 10 20 30 40 50 60 70

Scenario 1 Scenario 2
Scenario 3 Scenario 4

Interventions
We want to predict and 
understand “histories”

but nothing is written in
stone. What is the “space”

of interventions?
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What do we know…?
Known cases 
Known vectors
Known hosts
Known risk factors



What do we know…?
Known cases 
Known vectors
Known hosts
Known risk factors
Known interactions

What don’t we know…?
Unknown cases 
Unknown vectors
Unknown hosts
Unknown risk factors
Unknown interactions

How do we infer what’s  
under the water?

We need data…New data…
Existing data… 

Integrating multiple sources 
and multiple formats

We need new methods to
model these data

We need to be able
to model Complex 
Adaptive Systems



?Just how many interactions 
can we directly observe?

Can we infer ecological 
interactions without direct 

observation?

What sort of data is 
necessary and sufficient?  



What is the niche of an  
emerging disease?

P(C|X(t))

X = X(sd)+X(se)+X(n)+X(ev)+X(g)+X(af)+X(hm)+X(i)+X(sp)+...
Macro-Climactic 

factors
Behavioural 

characteristics

Micro-Climatic factors

Phenotypic 
characteristics

Hydrography

Competitor species Predator species

Host species Human activity

What do we want to predict? 
C - the presence, or abundance,
of cases of a disease,…

What affects it? 
The “niche” 
X = (X1, X2, X3, …, XM)

S(C|X)
Risk score

A large part of the complexity 
is in the multi-factoriality 
of both C and X. Adaptation is
inherent in the fact that P(C|X)
can change in time.

Problems of co-dependence and causality

Characterizes niche 
and “anti-niche”

Probability to find disease
given the niche factors X



What is a community  
of emerging diseases?
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The Potential 
Solutions



One model = one question 
—> one answer

 Constantinos I. Siettos1, and Lucia Russo, Virulence 4:4, 295–306; May 15, 2013

Google flu, 
REPORTA, 
influenzanet,…

“Curve fitting”

Where’s the Complex Adaptive 
Systems modelling?

Models heterogeneity,
but not naturally data based 



Standard SIR models

• Any recovered person has permanent immunity or least considered as such

within the time-frame of the disease.

• The population size is constant for the models.

2.1. SIR model

Consider a population in which a small number of its members suffer from

an infectious disease that can be transmitted to other members of the same

population. The objective we are pursuing now is to determine what proportion

of the total population will be infected and for how long, using a mathematical

model that incorporates into their structure the transmission mechanisms that

we consider important.

In order to model such an epidemic we divide the population being studied

into three classes labeled S, I, and R.

Let S(t) denote the number of individuals who are susceptible to the disease,

which can acquire the infection through contacts with infectious, that is, who

are not (yet) infected at time t. I(t) denotes the number of infected individuals,

assumed infectious and able to spread the disease by contact with susceptibles.

R(t) denotes the number of individuals who have been infected and then re-

moved from the possibility of being infected again or of spreading infection (see

Fig. 3).

S I R

humans

Figure 3: Structure of the SIR model.

Removal is carried out through isolation from the rest of the population,

through immunization against infection, through recovery from the disease with

full immunity against reinfection, or through death caused by the disease. These

characterizations of removed members are different from an epidemiological per-
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spective but are often equivalent from a modelling point of view that takes into

account only the state of an individual with respect to the disease.

We will use the terminology SIR to describe a disease that confers immunity

against reinfection, to indicate that the passage of individuals is from the sus-

ceptible class S to the infective class I to the removed class R. The mathemaical

model is:

dS

dt
(t) = µN − βS(t)I(t)/N − µS(t), (1)

dI

dt
(t) = βS(t)I(t)/N − γI(t)− µI(t), (2)

dR

dt
(t) = γI(t)− µR(t), (3)

dCi

dt
= pβS(t)I(t), (4)

with the initial conditions in t = t0

S(t0) = S0 > 0,

I(t0) = I0 > 0,

R(t0) = R0 > 0,

where S0, I0 and R0 are, respectively, the initial number of suceptible, infected

and recovered people with β, γ and µ positive constants. As is often the case,

not all infectives are symptomatic, specially in the Zika virus, and thus not

all cases are reported as such making the determination of the real number

of infectives a difficult task. In equation 4, Ci accounts for the cumulative

infectives and is a smooth monotone function that is used for identification

purposes. The parameter p is a proportion of the infectives that are reported. β

is the transmission rate from mosquitoes to humans, γ is the per capita rate of

recovery in humans such that 1/γ is the mean infectious period for humans, µ is

the per capita rate of mortality in humans such that 1/µ is the life expectancy

of humans, and N is the human population size.

7

2.2. SIR/SI model

This model is an extension of the SIR model, and has been used before in

the study of the dynamics of dengue in Thailand by Pandey et al. [27].

The population is divided into three classes for humans and two clases for

mosquitoes or vectors that transmit the disease. SH represents the number of

susceptible, IH the number of infectious, and RH the number recovered indi-

viduals in the human sub-population. Similarly, Sv represents the proportion of

mosquitoes currently susceptible, and Iv the proportion of infectious mosquitoes

infectious (see Fig. 4).

SH IH RH

SVIV

transmission

humans

mosquitoes

Figure 4: Structure of the SIR/SI model.

Mosquitoes are assumed to remain infectious for life. βv is the transmission

rate from humans to mosquitoes, βH is the transmission rate from mosquitoes

to humans, while 1/γH and 1/µH are the mean infectious period and the mean

lifespan of humans, 1/µv is the mean lifespan of mosquitoes. NH stands for the

human population size and Nv is the mosquito population size. The mathemat-

ical model is written as follows:

dSH

dt
(t) = µHNH − βHSH(t)Iv(t)/Nv − µHSH(t), (5)

dIH
dt

(t) = βHSH(t)Iv(t)/Nv − γHIH(t)− µHIH(t), (6)
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dRH

dt
(t) = γHIH(t)− µHRH(t) (7)

dIv
dt

(t) = βvSv(t)IH(t)/NH − µvIv(t), (8)

dSv

dt
(t) = −βvSv(t)IH(t)/NH + µvIv(t), (9)

dCi

dt
= pβHSH(t)Iv(t)/Nv, (10)

with the initial conditions in t = t0

IH(t0) = IH0 > 0,

RH(t0) = RH0 > 0,

Iv(t0) = Iv0 > 0,

where IH0, RH0 and Iv0 are respectively, the initial number of infected people,

the initial number of recovered people, and the initial number of infectious

mosquitoes, respectively. As in the previous model, we use the cummulative

number of infectives for identification purposes (equation 10).

Given the fact that the human population remains constant, one can express

RH in terms of the variables SH and IH , i.e. RH = NH − SH − IH , therefore

equation 7 can be discarded and we can reduce the dimensionality of the system.

A similar argument is true for the case of Sv in equation 9, i.e. Sv = Nv − Iv.

2.3. SEIR/SEI model

This model in based upon the work of Kucharski et al. (see [23]). This model

incorporates a new compartment, exposed, for the human and the mosquito

subpopulation which represents the number of individuals (and mosquitoes)

that are incubating the virus, EH (and Ev in the case of the vector population),

i.e. where individuals (mosquitoes) are infected but are not able yet to transmit

the virus. The inclusion of such a compartment into the model is due to the

fact that it is known that vector and human populations incubate the virus for

a number of days. Fig. 5 depicts the structure of this new model.

All parameters have the same connotation as in the SIR/SI model, and

here 1/κH and 1/κv are the mean latent periods for humans and mosquitoes

population respectively. The governing equations of the model follow:

9

Complication of 
answering just 
one question - the 
number of infected,
based on a small 
number of inputs

without/with
mosquitoes

but without… 
mosquito type, hosts (known/unknown), habitat, socio-economic/
socio-demographic factors, climate/weather, previous infection/co-infection (human/vector host), 
interventions, etc. etc.

But, for multi-factorial solutions we need multi-factorial data



Ecological modelling from a  
“Data Science” perspective

• 	Collec(on	data	
• 	Ecological	niche	data	
• 	Ecological	niche	model	data	
• 	Socio-economic	data	
• 	Socio-demographic	data	
• 	Phenotypic	data	
• 	Vegetable	and	crop	cover		
• 	Geographical	data	
• 	Medical	and	public	health	data…	

The	data	are	represented	in	space	and	
(me	–	spa(al	data	mining	

The Data Revolution has provided a unique opportunity to construct multi-factorial ecological 
models for emerging diseases. However, most ecological data is spatio-temporal at multiple scales. 
Spatial data mining is much less developed than standard data mining. 

Problems	with	data:	
Different	sources	

Different	loca6on,	data	base,	access,…	
Different	data	types		

categorical,	metric,	con.nuous,	discrete,…		

Different	spa6al	resolu6on		
Explicit	–	e.g.,	pixel	by	pixel	in	

environmental	layers	
	Implicit	–	30,000,000	data	points	versus	30		
Abio.c	versus	bio.c	

P(C|X(t))Spatial data

Model/niche construction

Niche description

P(C|X(t))
Co-occurrence between
arbovirus occurrence, C, and
niche variables, X(t)
ecological interaction 



Predictive Model for  
potential hosts of ZIKV

Table 1 Ranked list of potential nonhuman blood sources to Aedes aegypti in Mexico.  298	

* mammal species found positives to Dengue virus 299	

 300	

Rank Mammal epsilon  Rank Mammal epsilon 
1 Glossophaga soricina 12.78  38 Dasypus novemcinctus 7.11 
2 Molossus rufus 11.99  39 Sigmodon hispidus 7.02 
3 Artibeus jamaicensis* 11.68  40 Uroderma bilobatum 6.82 
4 Liomys pictus 11.06  41 Leptonycteris curasoae 6.75 
5 Oryzomys couesi 11.04  42 Carollia perspicillata 6.71 
6 Carollia subrufa 10.49  43 Centurio senex 6.61 
7 Sturnira lilium 10.28  44 Sciurus colliaei 6.59 
8 Artibeus lituratus* 9.91  45 Lontra longicaudis 6.49 
9 Choeroniscus godmani 9.42  46 Didelphis marsupialis 6.49 

10 Liomys salvini 9.33  47 Cratogeomys bulleri 6.35 
11 Oligoryzomys fulvescens 9.15  48 Carollia sowelli* 6.27 
12 Dermanura phaeotis 9.12  49 Myotis elegans 6.12 
13 Rhogeessa tumida 9.06  50 Myotis nigricans* 6.06 
14 Pteronotus personatus 9.05  51 Sigmodon arizonae 6.00 
15 Baiomys musculus 8.97  52 Rhynchonycteris naso 5.95 
16 Glossophaga commissarisi 8.80  53 Tlacuatzin canescens 5.87 
17 Didelphis virginiana 8.58  54 Leopardus pardalis 5.84 
18 Pteronotus parnellii* 8.58  55 Caluromys derbianus 5.78 
19 Orthogeomys hispidus 8.53  56 Molossus molossus 5.76 
20 Sciurus aureogaster 8.52  57 Oryzomys rostratus 5.76 
21 Molossus sinaloae 8.51  58 Osgoodomys banderanus 5.76 
22 Desmodus rotundus 8.23  59 Myotis carteri 5.66 
23 Saccopteryx bilineata 8.22  60 Micronycteris microtis 5.52 
24 Lasiurus intermedius 8.15  61 Sylvilagus brasiliensis 5.47 
25 Phyllostomus discolor 8.12  62 Sylvilagus floridanus 5.37 
26 Philander opossum 8.10  63 Spermophilus annulatus 5.36 
27 Peromyscus gymnotis 7.90  64 Peromyscus leucopus 5.30 
28 Balantiopteryx plicata 7.81  65 Conepatus leuconotus 5.30 
29 Eptesicus furinalis 7.69  66 Chaetodipus pernix 5.27 
30 Pteronotus davyi 7.55  67 Sciurus yucatanensis 5.23 
31 Dermanura tolteca 7.48  68 Sigmodon mascotensis 5.13 
32 Sciurus variegatoides 7.48  69 Eira barbara 5.12 
33 Mormoops megalophylla 7.45  70 Ateles geoffroyi 5.11 
34 Oryzomys melanotis 7.42  71 Neotoma phenax 5.07 
35 Artibeus intermedius 7.40  72 Noctilio leporinus 5.06 
36 Chaetodipus artus 7.20  73 Reithrodontomys fulvescens 4.95 
37 Nasua narica 7.18     

Chris Stephens� 2/28/16 9:21 PM
Deleted: s301	

 302	

Figure 1 Potential distribution of Aedes aegypti based on mammal distributions as 303	
predictors. 304	

 305	
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Predictive Model for  
bird mortality from WNV

Relation between bird mortality and 
mosquito genera by geographic 
co-occurrence between them

Risk map for presence of 
pathogenic strains of WNV

Risk map for presence of pathogenic 
strains of WNV in bird conservation areas



To Link Data-Predictions-Experiment 
The Emerging Disease (Arbovirus ) “production line”

Field	work	:
samples	

Solutions:
ñ Decision	support	 systems
ñ Treatments
ñ Intelligent	software

Close	relationship	with
public	health	authorities	
and	private	sector

Data	Mining:	
Predictive	models,
Risk	factors

Laboratory	analysis

Five	groups	distributed
throughout	Mexico
DF,	Chiap.,	NL,	Jal.,	Tab.

Two	laboratoriesOver	1200	mammals
collected	from	over
70	species



Data-Predictions

http://species.conabio.gob.mx/

http://species.conabio.gob.mx/


Data-Predictions  
Test zoonosis - Leishmaniasis
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presence of the parasite Leishmania (L.) mexicana and the number that tested negative. 415	

Figure legends  416	

Figure 1: Graph of ranked Epsilon values for all mammal species 417	

Figure 2: Graph of percentage of species identified as positive for presence of L. (L.) 418	

mexicana versus average value of epsilon. 419	

Figure 3: Graph of percentage of individuals identified as positive for presence of L. 420	

(L.) mexicana versus average value of epsilon. 421	

Figure 4: Risk maps of Leishmaniasis: a) determined by using only the 8 previously 422	

confirmed hosts, b) determined by using the 21 new confirmed hosts and previously 423	

confirmed hosts of  L. (L.) mexicana 424	

 425	

 426	

Species ɛ Negative Positive Total % positive Confidence intervals  
(95%) 

Carollia sowelli 8.83 43 2 45 4.4 -1 - 14 
Heteromys gaumeri* 8.8 5 0 5 0 -15 – 29 

Peromyscus mexicanus 8.79 115 6 121 5 2 - 11 
Heteromys desmarestianus* 8.72 30 0 30 0 -2 - 16 
Molossus rufus 8.63 1 0 1 0 -42 - 56 
Glossophaga soricina 8.57 19 7 26 26.9 -3 - 16 
Carollia perspicillata 8.5 8 0 8 0 -11 - 24 
Pteronotus parnellii 8.16 4 0 4 0 -18 - 31 
Desmodus rotundus 8.15 13 1 14 7.1 -6 - 20 
Sturnira lilium 8.03 56 7 63 11.1 1 - 13 

Artibeus phaeotis 8.01 35 1 36 2.8 -1 - 15 
Oryzomys couesi 7.73 2 0 2 0 -28 - 41 
Ototylomys phyllotis* 7.56 9 1 10 10 -9 - 22 
Sigmodon hispidus* 7.28 36 4 40 10 -1 - 14 
Peromyscus yucatanicus* 7.25 3 0 3 0 -22 - 35 
Didelphis virginiana 7.12 3 0 3 0 -22 - 30 
Didelphis marsupialis 6.44 11 0 11 0 -8 - 21 

Formatted Table
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Philander opossum 6.25 6 1 7 14.3 -12 - 25 
Centurio senex 6.01 1 0 1 0 -42 - 56 
Artibeus jamaicensis 5.98 81 5 86 5.8 1 - 12 
Artibeus lituratus 5.84 38 3 41 7.3 -1 - 14 
Myotis keaysi 5.61 2 0 2 0 -28 - 41 
Chiroderma villosum 5.56 5 0 5 0 -15 - 29 
Saccopteryx bilineata 5.3 1 0 1 0 -42 - 56 
Sciurus aureogaster 5.23 71 8 79 7.3 1 - 12 
Baiomys musculus 5.21 2 0 2 0 -28 - 41 
Artibeus watsoni 5.13 2 0 2 0 -28 - 41 
Choeroniscus godmani 5.05 10 3 13 23.1 -7 - 20 
Pteronotus personatus 5.03 3 1 4 25 -18 - 31 
Reithrodontomys mexicanus 4.91 1 0 1 0 -42 - 56 
Oryzomys rostratus 4.87 22 1 23 4.3 -4 - 17 
Micronycteris microtis 4.23 1 0 1 0 -42 - 56 
Oligoryzomys fulvescens 4.2 6 0 6 0 -13 - 27 
Peromyscus leucopus 3.8 22 4 26 15.4 -3 - 16 
Sturnira ludovici 3.79 24 1 25 4 -3 - 17 
Vampyrodes caraccioli 3.69 1 0 1 0 -42 - 56 
Liomys pictus 3.61 47 1 48 2.1 0 - 14 
Glossophaga commissarisi 3.49 2 6 8 75 -11 - 24 
Lonchorhina aurita 3.48 1 0 1 0 -42 - 56 
Phyllostomus discolor 3.48 0 1 1 100 -42 - 56 
Platyrrhinus helleri 3.36 5 0 5 0 -22 - 35 
Uroderma bilobatum 3.34 4 0 4 0 -18 - 31 
Urocyon cinereoargenteus 2.97 1 0 1 0 -42 - 56 
Procyon lotor 2.95 1 0 1 0 -42 - 56 
Myotis velifer 2.58 3 0 3 0 -18 - 31 
Microtus mexicanus 2.53 16 0 16 0 -6 - 19 
Myotis nigricans 2.47 2 0 2 0 -28 - 41 
Leptonycteris yerbabuenae 2.43 1 1 2 50 -28 - 41 
Reithrodontomys fulvescens 2.08 20 0 20 0 -4 - 18 
Neotoma mexicana 1.99 5 0 5 0 -15 - 29 
Eptesicus fuscus 1.82 1 0 1 0 -42 - 56 
Peromyscus levipes 1.34 1 0 1 0 -42 - 56 
Sorex saussurei 1.29 3 0 3 0 -22 - 35 
Osgoodomys banderanus 1.21 9 0 9 0 -10 - 23 
Liomys irroratus 1.16 8 0 8 0 -11 - 24 
Myotis auriculus 0.22 2 0 2 0 -28 - 41 
Tadarida brasiliensis -0.09 1 0 1 0 -42 - 56 
Peromyscus hylocetes -0.28 2 0 2 0 -28 - 41 
Antrozous pallidus -0.34 1 0 1 0 -42 - 56 
Peromyscus zarhynchus -0.46 2 0 2 0 -28 - 41 
Chaetodipus hispidus -0.71 4 0 4 0 -18 - 31 
Peromyscus pectoralis -0.73 2 0 2 0 -28 - 41 
Neotomodon alstoni -0.9 17 0 17 0 -5 - 19 
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Baiomys taylori -1.16 10 3 13 23.1 -7 - 20 
Chaetodipus nelsoni -1.24 3 0 3 0 -22 - 35 
Neotoma micropus -1.27 16 0 16 0 -6 - 19 
Peromyscus maniculatus -1.37 58 2 60 3.3 0 - 13 

Peromyscus eremicus -1.41 0 1 1 100 -42 - 56 
Perognathus flavus -1.52 1 0 1 0 -42 - 56 

Dipodomys merriami -2.01 1 0 1 0 -42 - 56 
*previously confirmed 427	

Note that although prevalence must be positive we have left the lower 95% confidence limit as 428	

negative as a guide to gauging the relative statistical significance of zero prevalence.   429	

 430	

 431	

 432	

 433	

Only	about	50	(2.5%)	of	mammals	on	the	American	
con.nent	have	been	iden.fied	as	hosts	of	Leishmania	

In	Mexico	only	8	out	of	419	(2.1%)	had	been	iden.fied	as	
hosts	

We	collected	922	individuals	from	70	species	
Predicted	and	confirmed	21	new	species	of	mammal	as	

carriers	of	Leishmania	in	Mexico	
13	of	them	are	bats,	iden.fied	for	the	first	.me	in	Mexico	
Squirrels	iden.fied	as	carriers	
33%	of	collected	species	were	confirmed	as	hosts	
Overall	infec.on	rate	was	6.7%	
No	species	could	be	rejected	as	a	host	at	this	infec.on	

rate	at	the	95%	confidence	level	
Changes	the	picture	for	control	of	Leishmania	totally;		
Leishmania	and	Lutzomyias	are	eclec.c	in	their	host	

source.		
Linnean	classifica.on	is	NOT	ecologically	relevant	

Predictions-Experiment  
Test zoonosis - Leishmaniasis



Data-Predictions-Experiment 
Test zoonosis - Leishmaniasis
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 438	

Biotic facilitation seems 
to be the norm. Species
are not distributed 
randomly



Conclusions
✤ Prediction of arbovirus disease risk factors and interventions is of huge public health 

importance
✤ Arbovirus diseases are Complex Adaptive Systems 

✤ Multi-factorial, multi-scale, multi-discipline —> multi-interaction
✤ Many arbovirus are multi-host, multi-vector
✤ There are too many interactions to observe directly 
✤ Standard mathematical techniques model only a few factors

✤ The Data Revolution has made available large amounts of data with which their complex, 
adaptive nature may be better modelled 
✤ Spatio-temporal data about organisms, relative to each other (biotic) and relative to the environment 

(abiotic), can be used to deduce the nature of their interactions 
✤ This can be done at the niche level (one to many) and at the community level (many to many)
✤ Obtaining and integrating data is a huge challenge - political and technical

✤ The optimal use of this data requires innovation in modelling using multiple techniques - 
from SIR-type models to agent-based modelling and the use of advanced machine learning 
and AI techniques.

✤ Our work on various zoonosis show the utility of innovative approaches that use data of 
arbitrary spatial resolution and format, such as predicting host range.
✤ Importance of a Data-Predictions-Experiment production line approach to emerging diseases
✤ Importance of a multi-pathogen, multi-vector, multi-host approach



δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω
Give me a place to stand on and I´ll move the earth

Give me enough data and I´ll predict anything

The Data Revolution will revolutionise our 
ability to model and understand ecology


