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The Scales of Complexity: What 
does the Devil’s Advocate say?



Who is the Devil’s Advocate?

A popular title given to one of the most important officers of the Sacred Congregation of Rites, 
established in 1587, by Sixtus V, to deal juridically with processes of beatification and canonization. 
His official title is Promoter of the Faith (Promotor Fidei). His duty requires him to prepare in writing 
all possible arguments, even at times seemingly slight, against the raising of any one to the honours of 
the altar. The interest and honour of the Church are concerned in preventing any one from receiving 
those honours whose death is not juridically proved to have been "precious in the sight of God”. In 
counterposition to the Advocatus Dei or Promoter of the Cause.

Promotor Fidei or Advocatus Diaboli

In common parlance, a devil's advocate is someone who, given a certain argument, takes a position they 
do not necessarily agree with (or simply an alternative position from the accepted norm), for the sake 
of debate or to explore the thought further. In taking this position, the individual taking on the devil's 
advocate role seeks to engage others in an argumentative discussion process. The purpose of such a 
process is typically to test the quality of the original argument and identify weaknesses in its structure, 
and to use such information to either improve or abandon the original, opposing position. It can also 
refer to someone who takes a stance that is seen as unpopular or unconventional, but is actually 
another way of arguing a much more conventional stance.

Wiki

http://www.newadvent.org/cathen/14033a.htm
http://www.newadvent.org/cathen/02364b.htm
http://www.newadvent.org/cathen/05215a.htm
http://www.newadvent.org/cathen/07462a.htm
http://www.newadvent.org/cathen/03744a.htm
http://www.newadvent.org/cathen/12454c.htm
http://www.newadvent.org/cathen/06608a.htm
http://en.wikipedia.org/wiki/Parlance
http://en.wikipedia.org/wiki/Argument
http://en.wikipedia.org/wiki/For_the_sake_of_argument
http://en.wikipedia.org/wiki/For_the_sake_of_argument


The candidates for canonization:
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Where did it all begin? 
Let’s think of ferromagnets…

Concepts in Critical Phenomena: Amsterdam Nov. 27 2006 slide

Magnetic Phase Diagram
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The Miracles of the Critical point
                          - scaling
                          - scale invariance
                          - universality
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Scaling laws

Phenomenology of the critical point
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Saints van der Waals, Gibbs, Ehrenfest,…



Great theory shame about experiment!
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Universality!

Experiment showed beta closer 
to 1/3 than 1/2 in 3D

Exact models and series expansions
also showed that mean field theory
was wrong. So what was wrong?

Fluctuations!
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Saint Landau’s (mean field) theory

In the vicinity of the critical point 
many degrees of freedom are 
strongly coupled

Saint Guggenheim, 1945



Coarse graining 
One of the most important miracles in all of science

✤ Mapping systems with many degrees of freedom to one with 
fewer…

✤ Mechanics - e.g., rigid bodies; planetary motion,…

✤ Statistical mechanics - e.g., kinetic theory, thermodynamics,…

✤ Genetics - e.g., genotype-phenotype map; nucleotides to genes,…

✤ Quantum field theory - e.g., renormalisation, bound states,…

✤ Statistical mechanics/field theory - e.g., block spinning, majority rule,…

Effective
 Theories

Single versus iterative coarse grainings…
maps from one system to “another” Saints Boltzmann, Migdal 

and Kadanoff, Mendel,…



Saint Wilson’s Renormalization Group: 
Explains Scaling, Scale invariance and Universality! 
And so did the Field theoretic RG - Saints Stuckelburg, Bogoliubov, Shirkov, Gell-Mann, Low,…

conquor” we will calculate the partition function Z ⌘ Z(T,H, E) iteratively. Any
coarse graining prescription can be used, the simplest being to first sum over the
values ±1 of every odd spin. Naturally, the choice of coarse graining cannot a↵ect
the partition function Z =

P
{�} exp(�H). However, by a suitable reparametrization

of T , H and E, T 0 = T 0(T,H), H 0 = H 0(T,H) and E 0 = E 0(T,H, E) the par-
tition function can be rewritten in the form Z =

P
{�} exp(�H0(T 0, H 0, E 0)) where

H0 = �(J/2T 0)
P

i,j �i�j � (H 0/T 0)�i + E 0 and the sum is only over the remaining
spins, i.e. the number of degrees of freedom has been halved. This is now the partition
function of a system at temperature T 0, magnetic field H 0 and with lattice spacing
2a. Note that a physical quantity such as the correlation length is invariant under
this procedure, we would simply be calculating it in terms of new “coordinates” T 0

and H 0. If we now perform a rescaling 2a ! a then the correlation length ⇠ ! ⇠/2
in units of the new lattice spacing. So the full coarse graining here consists of a
reparametrization and a rescaling.

Under the coarse graining transformation Rb, here with rescaling factor b = 2, we
have

Z(T,H, E, a, N) = Z(T 0, H 0, E 0, a,N/2)

F (T,H, a,N) = F (T 0, H 0, a,N/2) + G(T,H) (5.76)

�(N)(T,H, a,N) = �(N)(T 0, H 0, a,N/2)

where G(T,H) = E 0 � E is a spin-independent constant. These coarse graining
transformations, or renormalizations, satisfy the group multiplication law RaRb =
Rab, i.e. they possess a semi-group structure15.

These equations relate properties of a system at temperature T and magnetic
field H with N degrees of freedom to those of the same system but at temperature
T 0, magnetic field H 0 and with N/2 degrees of freedom. In statistical physics this
observation is just the “law of corresponding states” (see for example [118] for a
discussion). The crucial point is that the coarse graining allows one to relate the
physics of one physical system to that of another. Of course, one may keep on
coarse graining. For n iterations one will relate the physics of a system of correlation
length ⇠ to that of a system of correlation length ⇠/2n. For the correlation functions
one may iterate until one reaches a point where the correlation length is su�ciently
small that one may do a “matching” to a known calculable limit such as mean field
theory (this would not however be true if one implemented a non-linear RG where the
correlation functions do not map onto themselves). Neither is it possible at the level
of the free energy, as successive iterations lead to singular behaviour in the “additive
renormalization” term G(T,H). In this context however, if Ltn!12�nF (Tn, Hn) = 0

15Unlike its reparametrization counterpart as there are no inverse transformations one strictly
speaking talks of a renormalization semi-group rather than a RG. Here we will use the familiar
abuse of language and talk of an RG.
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Map from one lattice to another: 
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Maps form a (semi)-group
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disadvantages, yet both are associated with the fundamental problem of how to treat
the physics of systems composed of many non-linearly coupled degrees of freedom as
a function of “scale”. The Wilsonian RG is intuitive and very suitable for truly non-
perturbative approaches such as discussed in [54] and as manifest in Wilson’s famous
solution of the Kondo problem [114]. It can also be implemented at a perturbative
level and it is in that guise that it most resembles the reparametrization approach.

As mentioned, each methodology has its advantages and disadvantages. It is not
easy to imagine the reparametrization approach tackling the Kondo problem. On
the other hand it is hard to imagine the Wilsonian approach giving non-perturbative
results by way of improved asymptotics for the solution of non-linear partial or ordi-
nary di↵erential equations [115]. Here we will emphasize the reparametrization point
of view but at the same time try to point out similarities and di↵erences with the
coarse graining approach.

5.1 The Coarse Graining Approach

One of the deep insights of Wilson was to realize that the natural arena in which to
consider systems with many non-linearly coupled degrees of freedom was the space of
parameters,M, or space of Hamiltonians as it is more often termed. This, actually,
is equally true irrespective of whether one adopts the reparametrization point of
view or the coarse graining approach, although this does not seem to have been
realized in QFT before the advent of Wilson’s work. Given the existence of M,
how does a coarse graining manifest itself? It is well known that there are many
di↵erent constructions of coarse graining RGs, e.g. momentum shell integration,
block spinning, majority rule etc. They are realizable on some su�ciently large space
of probability distributions, and correspond to maps from measures to measures.
Usually, however, the Wilsonian RG is taken to be a map from Hamiltonians to
Hamiltonians, and realizable as a flow on M14. The mappings (almost invariably
approximate) are between di↵erent e↵ective degrees of freedom, represented by an
e↵ective Hamiltonian associated with di↵erent scales. If, for a particular system,
each di↵erent scheme could be implemented, then universal quantities ought to be
independent of the particular scheme used.

A simple, exactly solvable example of coarse graining is the 1D-Ising model on
a chain of lattice spacing a with N spins (see for example [117] for a full discus-
sion of this model from the RG point of view). The Hamiltonian H ⌘ H(T,H, E)
has the simple functional form H = �(J/2T )

P
i,j �i�j � (H/T )

P
i �i + E, where we

have included the additive constant E since it runs under the renormalization trans-
formation. Taking the Wilson point of view that for a theory with many coupled
degrees of freedom calculations can be carried out using a philosophy of “divide and

14Some of the subtle di↵erences between the two di↵erent notions and some of the pathologies
associated with the existence of RG transformations below the critical temperature are discussed in
[116].
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where Tn = Rn

2T and Hn = Rn

2H then

F (T,H, a,N) =
1X

n=1

2�nG(Tn, Hn) (5.77)

In the limit of a continuous system one can write b = e� and l = n� and take the
limit � ! 0 to find

F (T,H) =
Z
1

0
e�dlG0(T (l), H(l))dl (5.78)

where G0(T,H) = (@G(T,H, b)/@b)|b=1. This is the “trajectory integral”, developed
by Nelson [50], that expresses the free energy as a line integral along an RG trajectory.

The RG transformation Rb generates a one-parameter flow in M. Of particular
interest are the fixed points of the transformation. In the vicinity of a fixed point,
where T = T ⇤ and H = H⇤, with t = T � T ⇤ and h = H �H⇤, a linearization of the
RG transformation around the fixed point yields

Rb(T,H) ⌘ (t0, h0) ⇠ (by
t

t, by
h

h) (5.79)

where the eigenvalue exponents yt and yh are related to the critical exponents for the
fixed point. For instance, the correlation length exponent ⌫ = 1/yt. The variables
t and h here are linear scaling fields with scaling dimensions yt and yh respectively,
which are the eigenvalues of the RG transformation Rb linearized around the fixed
point. In the case of the 1D Ising model the fixed point corresponds to T = 0, H = 0.

The linear scaling fields t and h satisfy (5.79) only in a linearized neighborhood
of the fixed points. However, one may define non-linear scaling fields [119], gt and
gh, such that

Rb(gt, gh) = (by
t

gt, b
y

h

gh) (5.80)

is satisfied exactly, where gt(t, h) = t+O(t2, th, h2) and gh(t, h) = h+O(t2, th, h2). In
the vicinity of the fixed point the non-linear scaling fields reduce to the linear ones.
As we will see, they play an important role in crossover behavior.

To recapitulate then: a Wilsonian RG transformation can be viewed as a flow
in the (potentially) infinite dimensional space of parameters M (or the space of all
Hamiltonians). The transformations are associated with a one-parameter flow with
respect to a quantity which can be interpreted as a change in lattice spacing or some
UV or IR cuto↵. The RG transformation can be linearized around its fixed points,
the resulting eigenvalues yielding the critical exponents associated with that fixed
point. From a calculational point of view it throws the emphasis onto calculating
the parameter flows, the idea being that one may wish to calculate the physics of
a system at T and H, where an approximate calculation is extremely di�cult by
relating it to the system at T 0 and H 0 where the calculation is more reliable, the two
systems being connected by an RG flow. Being able to describe the original system
then depends on being able to calculate the transformation Rb.
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where the eigenvalue exponents yt and yh are related to the critical exponents for the
fixed point. For instance, the correlation length exponent ⌫ = 1/yt. The variables
t and h here are linear scaling fields with scaling dimensions yt and yh respectively,
which are the eigenvalues of the RG transformation Rb linearized around the fixed
point. In the case of the 1D Ising model the fixed point corresponds to T = 0, H = 0.

The linear scaling fields t and h satisfy (5.79) only in a linearized neighborhood
of the fixed points. However, one may define non-linear scaling fields [119], gt and
gh, such that
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is satisfied exactly, where gt(t, h) = t+O(t2, th, h2) and gh(t, h) = h+O(t2, th, h2). In
the vicinity of the fixed point the non-linear scaling fields reduce to the linear ones.
As we will see, they play an important role in crossover behavior.

To recapitulate then: a Wilsonian RG transformation can be viewed as a flow
in the (potentially) infinite dimensional space of parameters M (or the space of all
Hamiltonians). The transformations are associated with a one-parameter flow with
respect to a quantity which can be interpreted as a change in lattice spacing or some
UV or IR cuto↵. The RG transformation can be linearized around its fixed points,
the resulting eigenvalues yielding the critical exponents associated with that fixed
point. From a calculational point of view it throws the emphasis onto calculating
the parameter flows, the idea being that one may wish to calculate the physics of
a system at T and H, where an approximate calculation is extremely di�cult by
relating it to the system at T 0 and H 0 where the calculation is more reliable, the two
systems being connected by an RG flow. Being able to describe the original system
then depends on being able to calculate the transformation Rb.
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Criticality is “special” and “boring” 
(phenomenologically poor)

Critical point - unstable to relevant H and T parameters,
                                        sub-manifold in the space of parameters

i.e., Other fixed points of the RG

Crossover 
phenomena

In the vicinity of the critical point for a 
ferromagnet (and many others) there 
are only two scales - a microscopic 
lattice scale and the correlation length. 
When the correlation length is much 
bigger than the microscopic scale then 
we have universality. But, there are 
always other scales…



Crossovers O'Connor, Denjoe, and C. R. Stephens. 
"Renormalization group theory of crossovers." 
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a large class of crossovers, including temperature shifts and rounding. In section 8
we use the formalism to examine the crossover in the equation of state itself and,
in particular, the crossover between a first order and second order phase transition.
In section 9 we consider environmentally friendly renormalization applied to finite
size systems and the problem of dimensional reduction, concentrating mostly on thin
films. In section 10 we consider quantum/classical crossover in both in its relativis-
tic and non-relativistic settings. Sections 11-13 are associated with various other
applications of interest. Finally, in section 14 we draw some conclusions.

2 Phenomenology of Crossovers

The purpose of this section is to lay out, chiefly in the context of scaling theory,
the principal phenomena that are associated with crossovers. We will consider the
physical setting to be critical phenomena in the presence of an anisotropy parameter,
g. The extension to more than one anisotropy parameter is straightforward.

A useful framework in which to understand crossover phenomena is in terms
of symmetry. For g = 0 we assume there is a symmetry, S, and call the system
“isotropic”. The anisotropy g breaks this symmetry S ! S 0 where S 0 ⇢ S, so that
the full symmetry is never strictly present when g is non-zero. For a crossover we
always require two scales and the crossover occurs as the ratio of these two scales
changes. A very natural scale in a near critical system is the correlation length. In
this case one may speak of isotropic and anisotropic correlation lengths, ⇠0 and ⇠g

respectively. If g is also a physical mass scale, i.e. a non-linear scaling field then the
crossover naturally occurs as a function of the scaling variable x = g⇠ and is typically
centered around x ⇠ 1.

If g is a linear scaling field then the appropriate crossover variable is x = g�/t,
where t = ⇤2(T � Tc)/T , with ⇤ being a microscopic scale. The exponent � is
denominated the crossover exponent and is associated with the isotropic fixed point.
Small values of � correspond to slow crossovers. If we consider a generic scaling
function F(x, y, z, ...) then the canonical scaling behaviour in the isotropic (x ! 0)
limit is

x! 0 F ! xaA(y, z, ...) (2.1)

On the other hand in the anisotropic limit the scaling function exhibits a zero, xs, so
that in the vicinity of this zero, x! xs, one finds

x! xs F ! (x� xs)
ap�aAp(y, z, ...) (2.2)

The exponents a and ap are critical exponents associated with the two di↵erent
asymptotic limits, where the symmetries are S and S 0 respectively, while A and Ap

are universal scaling functions that are x-independent. Throughout the paper, un-
less otherwise stated, we will use the notation that critical exponents without indices
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where g is a generic anisotropy parameter, then:

In the isotropic limit:

In the anisotropic limit:

A richer phenomenology than standard criticality
Two different points of scale invariance

Two different fixed points of the RG!
A linearisation around one fixed point cannot access the other

Some examples of g: System size L, dipolar coupling, temperature in quantum 
ferromagnets, distance to surface for surface/bulk (wetting), spin anisotropy, kinematic 
heterogeneity, etc.

The scaling function A
contains a singularity
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anisotropic critical behaviour. This implies that �L ⇠ xs/L1/⌫ . If the sample were
of finite size then there would be no singularity and one could, for example, define
the shift with respect to the maximum of the susceptibility in which case F 0(x) must
have a zero at x = xc, which once again implies that �r ⇠ xc/L1/⌫ .

Besides obvious functions of interest, such as the crossover free energy and equa-
tion of state, a very intuitive set of scaling functions to examine are the e↵ective
exponents. One natural definition of these functions for magnetic systems, with H
the external magnetic field, is

⌫e↵ = � d ln ⇠(g)

d ln t

�����
H=0

�e↵ = � d ln �(g)

d ln t

�����
H=0

(2.8)

⌘e↵ = 2� d� d ln G(r)

d ln r

�����
T=Tc(g)

↵e↵ = � d ln C(g)

d ln t

�����
H=0

(2.9)

above Tc and

�e↵ =
d ln H(g)

d ln t

�����
T=Tc(g)

(2.10)

⌫ 0

e↵ = � d ln ⇠(g)

d ln |t|

�����
H=0

�0

e↵ = � d ln �(g)

d ln |t|

�����
H=0

(2.11)

↵0

e↵ = � d ln C(g)

d ln |t|

�����
H=0

�0

e↵ =
d ln '(g)

d ln |t|

�����
H=0

(2.12)

below Tc, where ⇠ is the correlation length, � the susceptibility, G(r) the two-point
correlation function as a function of separation r, and C is the specific heat. We are
here considering the e↵ective exponents to be associated with certain contours in the
phase diagram. Obviously, analogous quantities could be defined for other contours.
For instance, one can approach the coexistence curve along an isotherm other than
the critical one, in which case it is natural to generalize �e↵ . Any such generalized ef-
fective exponent, Ei

e↵ , is itself a crossover scaling function and, appropriately defined,
interpolates between the asymptotic values Ei and Ei

p
associated with the isotropic

and anisotropic theories respectively.
There is one last concept we will introduce here that will be found to play a special

role in dimensional crossover and conventionally only enters in corrections to scaling.
Consider the vertex function associated with the four point coupling, �(4) (see section
3 for notation); its behaviour for dimension d near the isotropic fixed point is given
by

dln�(4)

dlnt
= (4� d� 2⌘)⌫. (2.13)
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is a constant in the non-crossover case
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and hence                     are functions in the 
crossover case - universal functions

Not all renormalizations capture a crossover. Need a coarse graining/RG 
map that captures the changing nature of the effective degrees of freedom
as a function of the “environment”, e.g. as 3D effective degrees of freedom 
transform to 2D ones in a thin film 
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The evidence so far…
1. Critical behaviour defied an appropriate quantitative description for many decades

2. The RG completely solved the problem giving an accurate quantitative description of the 
critical region and explaining scaling and universality as associated with fixed points of the 
RG

3. Standard criticality is “special” (not generic) in that it has to be tuned, i.e., is associated with a 
manifold in the space of parameters with relevant operators

4. Standard criticality is “boring” (phenomenologically poor) in that there are only two length 
scales involved - super-universality

5. In real systems there are always other scales involved

6. The presence of other scales leads to crossover phenomena, with a richer phenomenology than 
standard critical phenomena

7. There are RGs that have been used to explain and describe many crossovers



Standard Criticality is “special” (not generic) 
What about self-organised criticality? The Miracle of the 
Self-tuning

An explanation of everything and 
an explanation of nothing?

At least its a possible route out of the 
non-generic nature of criticality

But it’s still boring! There are
still only one or two scales, the 
correlation length and a 
microscopic scale

Saints Bak, Tang and
Wiesenfeld



When are power laws really power laws? 
Scaling behaviour in Complex Systems 
The Miracle of the Beta Distribution

Graph&of&Medicaid&payments&versus&rank&of&pharmacy&provider&for&
Medicare/Medicaid&claims&NJ&(2002).&

Martínez-Mekler G, Martínez RA, del Río MB, Mansilla R, Miramontes P, et al. (2009) 
Universality of Rank-Ordering Distributions in the Arts and Sciences. 
PLoS ONE 4(3): e4791. doi:10.1371/journal.pone.0004791
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Stephens (2002)

Is the phenomenology of Complex  
Systems more complex? 



Is Language on the “Edge of 
Chaos”? The Miracle of Saint Zipf

In general in natural language 
s ~ 1. 

So, language is on the “Edge of Chaos”!

Does this give an adequate description of language? That we need only state that the 
frequency distribution of words is scale invariant with exponent s?  

NO! So what’s in language that’s not in a ferromagnet or a sandpile?

Saint Zipf (Ulysees)



The Miracle of the Complexity of 
Language
To be, or not to be--that is the question:  
Whether 'tis nobler in the mind to suffer  
The slings and arrows of outrageous fortune  
Or to take arms against a sea of troubles  
And by opposing end them. To die, to sleep--  
No more--and by a sleep to say we end  
The heartache, and the thousand natural shocks  
That flesh is heir to. 'Tis a consummation  
Devoutly to be wished. To die, to sleep--  
To sleep--perchance to dream: ay, there's the rub,  
For in that sleep of death what dreams may come  
When we have shuffled off this mortal coil,  
Must give us pause.  

Something complex? Something complex?

aaaa aaaa aaaa aaaa aaaa aaaa aaaa…

asmjgre fj sdjf s rege geoiie rgeasdffi…

1001 110 11001 1111 10101 1 10010 101 1101 1 10010 10010 …

If you are married or are a man and woman living together as if you are married you must claim jointly …

Something complex?

Something complex?

Something complex?



Language is full of scales

✤ Alphabet sizes aren’t scale invariant

✤ Word sizes aren’t scale invariant (average word size in English is about 5.67 
letters/1.74 syllables). The longest is 
“pneumonoultramicroscopicsilicovolcanoconiosis” at 45 letters. So, there’s 
less than two decades.

✤ Sentence sizes aren’t scale invariant (average sentence size is about 20 words)

✤ Paragraph lengths aren’t scale invariant (average size about 150 words)

✤ Book lengths aren’t scale invariant (median book length is about 64,000 
words)



In fact, its composed of Building 
Blocks

Definite   
article 

Noun Verb Preposition 
Adjective 

What’s the fitness landscape 
of natural language?

Noun phrase  Verb phrase  Prepositional 
phrase 

Subject Object 

The quick brown fox jumped over the lazy dog. 
The dog awoke and bit it.Germinal Cocho is 80 this year.

Lexicographic
Very rugged landscape, few combinations
of letters are valid (few combinations of 
nucleotides are genes) but smooth with 
respect to word content. No longer range
interactions beyond the word.

Grammatical
Very rugged landscape, few orderings and 
combinations of words are valid. No longer 
range interactions beyond the sentence.

Semantic
Very rugged landscape, few orderings and 
combinations of words are valid. 
Interactions at all scales!

The “micro” and the 
“macro” are linkedComplexity



Is Complexity Measurable? 
The Complexity of Language

To be or not to be that is the question. 

Para ser o no ser que es la pregunta. 

Om te zijn of te zijn niet dat de vraag is. 

Because of a certain or because it is not, it is question.  

Because or it is not for the sake of, that having asked and being convinced.  

Being not to be for the sake of, or that that, you ask, are convinced.  

It is that without having for the sake of, or, you ask, are convinced. 

To be or not to 
be that is the 

question. 

The measuring
apparatus. Is it

any good?

good

good

bad
bad

Does this make the measurement of 
complexity subjective?



No, just the same thing happens 
in physics

good

good

bad

bad

A good measuring apparatus
needs to be calibrated

Complexity is a joint property of a system
and its measuring apparatus



As is the physical world… 
Emergence of structure and reductionism

Strong

Weak
interactionsParticle physics Nuclear physics

Atomic physics

Organic chemistryMolecular biology

Emergence

Emergence

Emergence Emergence

Emergence

Emergence

Motter: Emergent 
networks - graphite and 

diamond

Everything here is a slave to the law



And the biological one… 
Emergence of function

Colour, size, form, leaves,  
roots, fruits, number of  
petals, number of cell types,  
number of genes, number of  
types of synthezised proteins  
 …    

Number of electrons, number of  
protons and neutrons, their masses, 
charges  
 

Macromolecule  
composed of 4  
bases C, G, T y U 
H, 
C, N y O.  

Botany, Ecology, Biology Cell Biology, Genetics Biochemistry, biophysics, molecular 
physics 

Chemistry, atomic physics, 
nuclear physics 

Física de partículas 

10-1m 

10-5m 

10-9m 

10-10m 

Building 
Blocks “Reductionism” 



Are physical and biological  
Building Block hierarchies the same?
No physicist loses sleep over the fact that we haven’t been able to derive a many-body 
formulation of molecular physics from first principles atomic physics, much less from 
nuclear physics and electrodynamics, even less from elementary particle physics.

No physicist or chemist loses sleep that we haven’t been able to describe the formation 
of a crystal of salt from the properties of sodium and chlorine atoms. 

Biologists and doctors can and probably do lose sleep worrying how to reduce the 
incidence of HIV, or cancer, or diabetes, or…

What’s the difference?

Effective theories work incredibly well in physics and chemistry.
Biological systems aren’t machines!
They’re Complex Adaptive Systems



More evidence…
1. The real word, both physical and biological, is not scale invariant, rather, what characterises it is a 

multitude of different scales, each associated with a particular effective degree of freedom - 
Building Blocks - that form a hierarchy. 

2. The associated phenomenology is immensely rich. 

3. We have no quantitative, theoretical framework to describe such hierarchies (the problem of 
crossovers x 1000! Is the RG our best hope?) Successful mathematical modelling has been with 
effective theories associated with “one” scale.

4. The world is so full of scales that we think that criticality is the, rather ubiquitous, exception that 
needs to be explained. However, we can also think that the natural state of the world is scale 
invariant and then we must explain why there exist so many scales and perhaps every, very 
ubiquitous, scale requires an explanation.

5. The only way of building complexity is through Building Blocks - the problem of search.

6. The Building Blocks in biological systems have functions.



From the science of yesterday to 
the science of tomorrow… 
the challenge of Complex 

Adaptive Systems



How we do science in a nutshell…
The Faith
✤ The Scientific method: Systematic observation, 

measurement, and experiment, and the formulation, 
testing, and modification of hypotheses

✤ Phenomenology - a body of knowledge that relates empirical observations of 
phenomena to each other, in a way that is consistent with fundamental theory, but is 
not directly derived from theory.  

✤ Taxonomy - the practice and science of classification. A classification of things or 
concepts, as well as to the principles underlying such a classification.

✤ Examples: Medicine, astronomy, chemistry, biology, physics,... 

✤ Scientific law - when a particular phenomenon always occurs if certain conditions 
are present

http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Phenomenon
http://en.wikipedia.org/wiki/Theory


The worldview of the last 3 
centuries: The Doctrine

The world as a machine

How do we model machines?

With differential equations

We all obey the law!

In fact...

we are slaves of the law



Universality 
We’re all equal under the law 

But in physics and chemistry... 
there’s really not a lot to sayonce you’ve seen one perfect gas 

you’ve seen them all!At all times and in all placesIn general, you don’t need 
that much data



In Complex Adaptive Systems 
however...

There’s a lot you can say!

Imagine what you can 
say about a city

versus a crystal as big as a city!



You can say a lot about a Complex 
Adaptive System and each thing you say 
depends on a lot of other things

P(A,B,C,D,...; t|a,b,c,d,...; t’)
Diabetes

Angina
ObesityRenal failure

Leukaemia 45 mins exercise 
per week

Father had diabetes
SNP Rs7903146

Any observable of a complex system depends 
on a whole host of other factors

Many causesMany effects

Many disciplines
From the “micro” to the “macro”



Fortunately,... 
we are in the middle of a 

revolution 

You need a lot of data to 
describe complexity

The Miracle of the Data



A revolution in data gathering...



A revolution in data storage...

Genomes 1kB - 1.5 GB

Human brain 
10-100 Terrabytes

Worm neural network 0.3MB
All the books in the world
30-50 Terrabytes In electronic form 1 zettabyte

Raw data is 
processed 
and stored



Adaptation and the freedom  
to choose

The difference between complex and 
simple systems is the difference between 

“being” and “doing”

Mechanistic Adaptive

The cat obeys the same laws 
of physics as the ballBut its not a “slave” to them

The evolution of function 
is the revolution that allowed 
systems to escape the tyrrany 

of the laws of physics. 
Complexity is a consequence 

of that revolution. 



Adaptation and  
Decision Making

Complex Adaptive Systems...
make “decisions”

both at the individual 
and collective levels



There are good decisions 
and there are bad decisions



Building Blocks, Multi-tasking 
and Specialisation

Complexity through evolution 
has come about by functional 
specialisation of “modules”

The advantages of specialisation and the disadvantages



To make a mathematical 
model of a dynamical 

system...

Modeling complexity

we need a space of states
and update rules that tell us how 
to get from one state to another



From the simple to the 
complex and from the 
complex to the simple

Modeling complexity



Competition between short-range 
repulsion and longer range 
atraction between “particles” 

Equation for “charged” particles 
following an external force gi  

Couzin, I.D. , Krause, J.,  
Franks, N.R. & Levin, S.A.  
(2005) Nature, 433 , 513-516.  

This isn’t describing complexity



✤ emergence of structure versus emergence of function

Here we see the 
emergence of function 

We begin with “building blocks” 
of material governed

by the laws of physics (mechanics) 
and we end up with creatures 

with function



The Paradox of Complexity

We experience and manage complexity every day,...

unconsciously
“Consciously”, we look always to single, 

simple causes...
capitalism, communism, rich, poor, PRI, PRD,

junk food, soft drinks, colonialism,...  



Why?

Evolution has created 
complex adaptive systems

by allowing us to escape the 
tyranny of the laws of physics

Have we just traded 
one master for another?Natural selection also enslavesHow far does free will go?



Conclusions
✤ Criticality has played a miraculous role in statistical mechanics and condensed matter 

theory leading to huge conceptual and theoretical advances - principally the RG and an 
understanding of the origin of scaling and universality.

✤ It appears in many different contexts in the physical, biological and social sciences.

✤ Power law scaling exists because there is no characteristic scale - whether it happens a 
surprising/unsurprising amount is somewhat subjective - like “emergence” itself.

✤ Maybe the puzzle is better seen by asking not why there are so many systems without a 
scale (statistical physics) but why there are so many systems with a scale (particle 
physics).

✤ Real systems always have multiple length scales - crossovers.



Conclusions

✤ The phenomenology of Complex (Adaptive) Systems is immensely richer than that 
of physical systems and especially that of critical systems. 

✤ To describe the rich phenomenology of Complex (Adaptive) Systems requires a huge 
amount of data and therefore has required a data revolution almost all of the data of 
which is “non-scientific”. 

✤ There’s much more data about Complex (Adaptive) Systems than there is capacity 
for humans (and even less scientists) to study it. New modelling paradigms such as 
data mining are required. Data mining is not only the best to attack this data, its also 
the appropriate way to develop a better phenomenological and taxonomic 
understanding of Complex (Adaptive) systems



Conclusions
✤ This rich phenomenology of Complex (Adaptive) Systems comes about from the 

existence of a hierarchy of important scales.

✤ These scales are associated with Building Blocks which, in the case of adaptive systems, 
have function.

✤ Building Blocks are the only way by which Complex (Adaptive) Systems and 
complexity may emerge.

✤ The difference between physics/chemistry and biology/social sciences is the difference 
between “being” and “doing” - Building Blocks in biology/social sciences have 
function and specialisation.

✤ The concepts and tools of present day science, and especially physics, are not adequate 
for describing Complex Adaptive Systems and complexity.



Saint Criticality or Saint Building Block…
You decide.



As we don’t have adequate conceptual or 
theoretical frameworks in which to understand 
Complex (Adaptive) Systems or complexity, here 
are some homework problems… 
How do we model adaptation?

How do we classify complex systems?

How do we obtain and integrate data?

How do we model the emergence of function?

How do we model the emergence of multi-tasking 
and specialisation?

How do we mathematically model macro-evolution?

How do we mathematically model meta-evolution?


