
The Evolution of Complexity
seen as a problem of Search:
Can we predict a priori which search
algorithm will work best on which problem?

Chris Stephens, C3 y ICN, UNAM

CCS 17, Cancun, Mexico

17-20th September 2017

Isn’t Everything just Search?
✤ Need a search space

✤ Search points/configurations

✤ Need a function to qualify the search
✤ Objective function/fitness/“success” measure

 Need a problem to “solve”

✤ Need a search algorithm
✤ Search Heuristic - EAs/Evolution/Nucleosynthesis/…

 Need a way to “solve” it
✤ Exogenous versus endogenous

✤ Objective function/fitness/success measure

✤ Stopping criterion

✤ Natural (Physical)/Artificial (Mathematical)

There are a lot of problems and
a lot of search algorithms!

No Free Lunch Theorems

Over all problems to solve, no way of
solving them is any better than any other

What features of a given problem can tell us which search
algorithm to use?

Which search algorithms work best on which problems?

What problems are ‘’special’’?

Is there anything special about “real world” (physics, biology,…)
problems and/or search algorithms?

Which search algorithms work best on these “special” problems?

1 Wolpert, D.H., Macready, W.G. (1995), No Free Lunch Theorems for Search, Technical Report SFI-TR-95-02-010 (Santa Fe Institute).
2 Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization," IEEE Transactions on Evolutionary Computation 1, 67.

Searching for the magic bullet
search algorithm…

37 problems with 9 ‘’search’’ (classification) algorithms

Webb, Boughton and Wang, Machine Learning 2005

Performance differences between algorithms of up
 to a factor of 3, on a given problem!

No one works best on all, or even a significant subset

When and why does a particular
search algorithm work best on
a given problem?

Can we predict it?

Let’s start with one “search” algorithm
- the Naive Bayes classifier

What features of a given
problem can tell us which
search algorithm to use?

When is the Naive Bayes
approximation not so naive?

Constructs P(C|X) neglecting correlations between the Xi
Works pretty well on many problems. Why?

Let’s embed it in a larger
set of search algorithms
where the factorisation of
the likelihood is not maximal.

Generalised Naive Bayes

Stephens, C.R., Huerta, H.F. & Linares, A.R. Mach Learn (2017). https://doi.org/10.1007/s10994-017-5658-0

Why the Naive Bayes approximation is not as Naive as it appears, Stephens, C.R, Huerta, H.F. and Linares, Ana Ruiz, Information, Intelligence, Systems and Applications
(IISA), 2015 6th International Conference on, pp. 1-6, (2015).IEEE.

When is the Naive Bayes
approximation not so naive?

We’d expect the NBA to breakdown when there are strong correlations… wouldn’t we? i.e.,
for any problem with strong correlations we should choose another algorithm. But…

i) How we do quantify strong correlations?
ii) How do we turn that into a decision about which algorithm to use?

“What features of a given problem can tell us which search algorithm to use?”
“Large” values of tell us
that those features in should
not be separated… “Let no man…”
The can’t all have the same sign.
Errors must cancel!

Same as linkage in population
genetics - gives information on
epistasis

 is a “building block”
of features

When is the Naive Bayes
approximation not so naive?

Make up some artificial two-feature
problems where we can tune the
degree of correlation
Our diagnostic predicts the
performance of the NBA.

Extend this to 4, 6 and 8-feature
problems by concatenating the
2-feature ones

Our diagnostic predicts the
performance of the NBA.

Which search algorithms
work best on which

problems?

When is the Naive Bayes
approximation not so naive?
Now let’s go to “real” world problems - 20 UCI datasets

Our diagnostic predicts the
performance of the NBA
relative to more sophisticated
generalisations

It’s remarkable that one single diagnostic can
give such good results on real world
problems that are so very different.

Meta-prediction algorithm -
predicting which predictor will
predict best

Is there anything special about
“real world” (physics, biology,…)

problems and/or search
algorithms?

What problems are ‘’special’’?

Isn’t Everything
just a Building

Block?

The Evolution of everything in the
Universe seen as a Search process
using Building Blocks

Strong

Weak
interactionsParticle physics Nuclear physics

Atomic physics

Organic chemistryMolecular Biology
More Complex

Less Complex

Why Building Blocks?

Hora making He, Be and Li

n+p+n+p —> He + gamma
Tempus making He

Toy model of “nucleosynthesis”
as search

Fig. 1. A sample evolution of the presented model,
with n = 12 particles and m = 6 lattice sites. Evolution
is from top to bottom. The valid block sizes are {1, 3, 12}.
Note how, when four particles fall on the same site,
only a group of three is formed. Note also, how pairs
of groups of three don’t bind together, for 6 is not a
valid block size.

A set of n particles and m lattice sites.

Construct states, where a certain, fixed number of particles are found at the
same lattice site, this state being the objective of the search.

What type of search algorithm is favoured?

Search algorithms implementable as Markov processes that randomly permute
building blocks between lattice points

The question then becomes whether this binding of particles makes the
algorithm more efficient and, if so, how does the nature of the building blocks
-number and type - affect the efficiency of search?

Building Blocks and Search, Lozano, A., Mireles, V., Monsivais, D., Stephens, C.R.,
Alcala, S. and Cervantes, F., MICAI, 704-715, Springer-Verlag (2009).

Can set up different building block
types and number of levels

Toy model of “nucleosynthesis”
as search

Without Building Blocks the
optimal state is never found

The more Building Block
levels the better, but
asymptotes due to finiteness
of supply of elemental blocks

P(t + 1) = MP(t)
Process is described by
an upper-triangular
Markov matrix. e.g.,

Toy model of “nucleosynthesis”
as search

Performance depends on both the
number of building block levels and
where they are located

Also depends on the availability of each
block type. Missing blocks can make
certain states inaccessible.

For an optimal state of 27 and 2
intermediate blocks, the optimal
positions are 3 and 9 (geometric) as this
equalises the difficulty of each step in
evolution

Population Genetics as Search

Population of genotypes to be searched through
Search algorithms have selection, mutation and homologous recombination

f(I) is the fitness of genotype I. The fitness landscape fixes the problem
to be “solved”

These fix the
search algorithm

Population Genetics as Search
Aesexual and Sexual Reproduction as Search Algorithms

These two Building Blocks make the genotype

We don’t care what
genetic material is
here!

Dynamics is naturally described in terms of

Selection-weighted Linkage
Disequilibrium Coefficient

Just like the diagnostic for
going beyond the NBA

Population Genetics as Search

What do we mean by good?

Is the average population fitness higher
for one search algorithm versus another?

Does one search algorithm produce more
of a fit string than another?

What search algorithm is good on which fitness landscape (problem)?

Consider two genetic loci:

Describes all possible fitness
landscapes (problems)

Population Genetics as Search

Multiplicative landscapes Additive landscapes Maximum negative epistasis (redundancy)

Sex better here

Conclusions
Question: What features of a given problem can tell us which search algorithm to use?
Answer: As each search algorithm has a bias we need to see which features in the problem
structure are inconsistent with that bias.

We showed how a set of correlation functions on the feature set yielded a lot of information about the underlying problem
structure

Question: Which search algorithms work best on which problems?
Answer: Knowledge of problem structure allows one to predict which algorithm will offer
best performance.

We showed how one could make an a priori differentiation between the NBA and its generalisations using knowledge of the
problem structure.

Questions: What problems are ‘’special’’? Is there anything special about “real world”
(physics, biology,…) problems and/or search algorithms?

Answer: Problems that have a hierarchical Building Block structure are special. Basically, all of
physics and biology are of this type. They are associated with quasi-modular and redundant
fitness landscapes. They are ubiquitous because they are the ONLY practical way to evolve
complexity (from nucleosynthesis to genetics to social organisation)

Question: Which search algorithms work best on these “special” problems?

Answer: Recombinative search algorithms that combine building blocks, such as
nucleosynthesis or sex.

