

Lifestyle diseases as Complex Adaptive Systems: Perspectives and Challenges

Chris Stephens, C3 y ICN, UNAM

CCS 17, Cancun, Mexico 17-20th September 2017

Partial list of members of the C3 research program in Lifestyle Diseases

Chris Stephens C3 y ICN, UNAM Marcia Hiriart C3 y IFC, UNAM Enrique Hernández-Lemus INMEGEN Martha Käufer INNSZ Eduardo Garcia INNSZ Alejandro Frank C3 y ICN, UNAM Bruno Estañol INNSZ Guillermo Melendez Hospital General Ruben Fossion C3 y ICN, UNAM Ali Ruíz Coronel C3, UNAM Samuel Canizales INMEGEN Emmanuel Landa C3 y ICN, UNAM Irving Morales C3 y ICN, UNAM Joel Mendoza C3 y ICN, UNAM

CONACyT Fronteras-2015-2-1093 UNAM PAPIIT CONACyT Programa de REDES Fundacion Carlos Slim Ana Leonor Rivera ICN, UNAM Natalia Mantilla C3 y FC, UNAM Sergio Hernández C3 y FC, UNAM Jonathan Easton C3, UNAM Hugo Flores Huerta C3 y IIMAS, UNAM Luis Miguel Gutierrez INGer Ulises Perez INGer Roberto Carlos Castrejon INGer Diana de la Cruz FM, UNAM Concepción García FC, UNAM Francisco Fernández de Miguel IFC, UNAM Dagmara Wrzecionkowska FCP, UNAM José Antonio Rivera FC, UNAM Heriberto Sicilia FC, UNAM Karol Baca, INMEGEN Ivette Rizzo, C3 UNAM Jesus Batta, C3 UNAM Alejandro Hernandez, FM UNAM Antonio Barajas, FM UNAM Adriana Robles, FM, UNAM Ricardo Tapia, FM, UNAM

Predictive models for lifestyle diseases based on the ``deepest" datasets Lifestyle diseases are intimately associated with decision making: Your Prediction/ Decision Heuristic/Algorithm depends on...

What and how What and how you "feel"

Your prediction/decision heuristic/algorithm then determines your behaviour - what you do

They are complex... Multifactorial, Multi-scale, Multi-disciplinary

They are dynamical and adaptive... evolving in a space of configurations and interventions that are a result of decisions

What is a decision? Its based on a prediction

Probability of C given X

In the exact sciences, predictions

tend to be algorithmic

Curative Medicine Less complex, less adaptative Preventative Medicine More complex, more adaptative

A "decision" P(C | X(t)) Prediction

In medicine and public health, predictions

tend to be heurístic

X(t) = the information used to make the decisión (predict)

How much information do you need or use to make a "good decision"?

What degree of multi-factoriality is there?

Preventative medicine requires a lot more data. Where do we get that data...? from the data revolution

Project 42: Pilot

Results from predictive models * based on data from a study of 1,076 non-academics and academics from the UNAM: 2,524 variables - Genetic, epidemiological, physiological,...

Epidemiological: Personal (81), Personal history (130), Family History (548), Self-health evaluation (226), Nutrition (220), Lifestyle (390), Health knowledge (293)

Genetic (772)

Anthropometric and physiological (49)

Second phase now in progress: > 300 students and faculty of the Facultad de Medicina, UNAM, longitudinal study of previous populations: Extend to > 700,000 SNPs, psychological testing, EEG, ECG, actigraphy,...

Nutrition	
Specificity (TNR)	83.40%
1 – Specificity (SPC)	16.60%
Sensitivity (FPR)	29.69%
Accuracy (ACC)	72.76%
AUC ROC	0.63
Lifestyle	
Specificity (TNR)	84.17%
1 – Specificity (SPC)	15.83%
Sensitivity (FPR)	31.25%
Accuracy (ACC)	73.68%
AUC ROC	0.70
Lifestyle and Nutrition	
Specificity (TNR)	78.38%
1 – Specificity (SPC)	21.62%
Sensitivity (FPR)	46.88%
Accuracy (ACC)	72.14%
AUC ROC	0.71
Lifestyle and Nutrition and	
Personal and Family History	
Specificity (TNR)	81.08%
1 – Specificity (SPC)	18.92%
Sensitivity (FPR)	51.56%
Accuracy (ACC)	75.23%
AUCROC	0.76

Do you become what you eat?

The data shows an overconsumption of 200-300 Cals/day at age 20-30. 8 Cal/day is enough (naively through the famous/infamous 3500 cal rule) to generate the observed increase in BMI. Where do the other calories go?

DH17

Why aren't we even fatter?

Relation between temperature and BMI

	Study	/1	Stu	dy 2	
	points	deciles	7-day mean	1-day mean 0.015 33.524 0.0019 0.029	
slope	0.0072	0.0067	0.0093	0.015	
intercept	35.99	36.00	33.69	33.524	
Cislope	0.0028	0.0024	-0.019	0.0019	
	0.012	0.011	0.038	0.029	
Clintercept	35.88	35.89	32.88	33.15	
	36.11	36.12	34.51	33.90	
tslope	3.18	3.56	0.68	2.25	
tintercept	590.34	708.93	86.9	174.92	
F	10.15	12.64	0.46	5.06	
р	0.0015 (*)	0.0074 (*)	0.50	0.026 (*)	
R2	0.0094	0.61	0.022	0.027	

Chronic diseaseRisk factorsWhat you doExercise

For men 20-59 de PREVENIMSS 2006

Is it riskier to walk than do nothing?

Perception of weight and Cognitive Biases - What you think/feel

Figure 2. Comparison of non-diagnosed (ND) versus diagnosed (D) obese mean responses for the category self-perception question by gender.

Self-serving bias Anchoring bias Slopes in the linear range are 35-50% less than one would expect if people could gauge their weight accurately! The lobster in the pot syndrome

Figure 3. Comparison of non-diagnosed (ND) versus diagnosed (D) obese mean responses

for the Stunkard figure rating scale question by gender.

Chronic disease - risk factors What you think (know): Ignorance can kill

Epidemiological data from ENCOPREVENIMSS 2006

¿Sabe leer o escribir un recado?

Ignorance and especially about health issues is as important a risk factor as obesity

For men 20-59 from PREVENIMSS 2006

Obesity -risk factors Who you are

772 SNPs considered Subsets with obesity, DM2, lipids, hepatic

Driver	Value	Epsilon	P(C/X)	P(C)	N(X/C)	N(X)	N(C)	NTotal
rs2943641_A	2	2.9391	0.6000	0.2169	6	10	123	567
rs2972146_C	2	2.9391	0.6000	0.2169	6	10	123	567
rs2943650_G	2	2.9391	0.6000	0.2169	6	10	123	567
rs12629908_A	2	2.6981	0.3116	0.2169	43	138	123	567
rs870347_C	2	2.2200	0.2914	0.2169	44	151	123	567
rs1407434_G	0	2.1617	0.2841	0.2169	50	176	123	567
rs972283_A	2	2.1543	0.3085	0.2169	29	94	123	567
rs10496971_C	2	1.9688	0.3011	0.2169	28	93	123	567
rs2241766_C	1	1.9472	0.2741	0.2169	54	197	123	567
rs10885122_A	2	1.9426	0.5000	0.2169	4	8	123	567
rs2986742_G	2	1.9121	0.4545	0.2169	5	11	123	567
rs1799884_A	2	-2.0385	0.0000	0.2169	0	15	123	567
rs3943253_A	2	-2.0502	0.1364	0.2169	15	110	123	567
rs4607517_A	2	-2.1053	0.0000	0.2169	0	16	123	567
rs4880436_A	2	-2.1388	0.0870	0.2169	4	46	123	567
rs174537_C	2	-2.1927	0.0851	0.2169	4	47	123	567
rs174546_G	2	-2.1927	0.0851	0.2169	4	47	123	567
rs174550_A	2	-2.1927	0.0851	0.2169	4	47	123	567
rs972283_A	0	-2.3181	0.1521	0.2169	33	217	123	567
rs2073821_A	2	-2.3502	0.1170	0.2169	11	94	123	567
rs1513181_G	2	-2.3605	0.1250	0.2169	14	112	123	567
rs2237895_A	2	-2.3836	0.1308	0.2169	17	130	123	567
rs7803075_G	2	-2.4635	0.0847	0.2169	5	59	123	567
rs896854_A	0	-2.5528	0.1398	0.2169	26	186	123	567
rs7809589_C	2	-2.5964	0.1231	0.2169	16	130	123	567
rs1111875 A	0	-3 2065	0 1211	0 2169	23	190	123	567

UNAM Study 2014: Genetic analysis

obesity (score = 0.904, predictive but scarce)

obesity (score = 0.105, not so predictive but common)

Doesn't give a good model on its own

The Challenges of Modelling Lifestyle Diseases

Lifestyle diseases, in particular, can only be understood within the paradigm of CAS. We can't model such systems very well.

- They are extraordinarily multifactorial, requiring big data across multiple scales: genetics, epigenetics, physiology, psychology, neuroscience, epidemiology, sociology,... We don't have the data to tackle this.
 - 1. Standard approach of type "clinical trial" won't work C vs X1, C vs X2 etc.
 - 2. To present scientific results in such a setting is an enormous challenge.
- 2. They require the construction of causal chains across long periods of time where adaptation plays a crucial role. We can't do that.
- 3. They require large, interdisciplinary teams to analyse and model all the relevant data. We don't have them.

Only by making progress with 1-3) will we be able to come up with suitable interventions.