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What is the RG?

Based on the fundamental notion of coarse graining

Mapping systems with many degrees of freedom to one with fewer...
*Mechanics - e.g., rigid bodies; planetary motion,...

«Statistical mechanics - e.g., kinetic theory, thermodynamics,...

*Genetics - e.g., genotype-phenotype map; nucleotides to genes,...
*Quantum field theory - e.g., renormalisation, bound states,...

Statistical mechanics/field theory - e.g., block spinning, majority rule,...

Single versus iterative coarse grainings...
maps from one system to “another”
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The Renormalization Group

Explains Scaling, Scale invariance and Universality!

2-D Ising Model

Kadanoff's construction Lo

H = :(J/ZT) Zz—,ja,;aj - (H/T) Za’ ag; -I_-E

16 original spins

Map from one lattice to another: Ra & — ¢ /2

spins are well correlated on l<< Map iS on t.he Space Of
i o H(T,H,E) - H(T',H',E’) theories
| No guarantee the theory

A
4 effective spins i * Z(T,H,E,a,N) = Z(T",H', E',a, N/2) will “renormalize
— F(T,H,a,N)=F(T',H',a,N/2) + G(T,H) for 1D

I'“NT, H,a,N) =T™(T', H' a, N/2)

RoRy = Rap Maps form a (semi)-group
Iterate H, = R3H T, = R3T and look for fixed points: T =T* and H = H* é=00, £=0

Linearize the transformation near the fixed point: Ry(T, H) = (¢, k') ~ (b¥'¢,b*"h)

Critical exponents are related to the eigenvalues
of the linearised RG transformation, e.g. v = 1/y*



Criticality is “special” and “boring”
(phenomenologically poor)

Critical point - unstable to relevant H and T parameters,
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i.e., Other fixed points of the RG

¥

Crossover
phenomena

sub-manifold in the space of parameters

In the vicinity of the critical point for a
ferromagnet (and many others) there
are only two scales - a microscopic
lattice scale and the correlation length.
When the correlation length is much
bigger than the microscopic scale then
we have universality. But, there are
always other scales...
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Crossovers

For a general scaling function F(z,y, 2, ...) where z = g%/t or T = g€
where g is a generic anisotropy parameter, then:

In the isotropic limit: r—0 F—z2%Aly,z..) The Scfﬂing functiorfA
contains a singularity

In the anisotropic limit: z —z, F — (z — z5)* *Ax(y, 2, ...)

A richer phenomenology than standard criticality
Two different points of scale invariance
Two different fixed points of the RG!

A linearisation around one fixed point cannot access the other

Some examples of g: System size L, dipolar coupling, temperature in quantum
ferromagnets, distance to surface for surface/bulk (wetting), spin anisotropy, kinematic
heterogeneity, etc.



Critical phenomena in a “box”
Environmentally Friendly Renormalization

Not all renormalizations capture a crossover. Need a coarse graining /RG
map that captures the changing nature of the effective degrees of freedom
as a function of the “environment”, e.g. as 3D effective degrees of freedom
transform to 2D ones in a thin film X = At—"r’ f ( Lt”)

gammaphi2 2 — v, =1/v is a constant in the non-crossover case

Vg = — dIn§(9)| and hence 7, are functions in the

dlnt - :
1Y lu=o crossover case - universal functions
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Summary of the RG

Critical behaviour defied an appropriate quantitative description
for many decades

The RG completely solved the problem giving an accurate
guantitative description of the critical region and explaining scaling
and universality as associated with fixed points of the RG
Standard criticality is “special” (not generic) in that it has to be
tuned, i.e., is associated with a manifold in the space of
parameters with relevant operators

Standard criticality is “boring” (phenomenologically poor) in that
there are only two length scales involved - super-universality

In real systems there are always other scales involved

The presence of other scales leads to crossover phenomena, with
a richer phenomenology than standard critical phenomena

There are RGs that have been used to explain and describe many
crossovers — but it's a set of measure zero!



What Is Genetic Dynamics?

Population of “objects” — “genotypes”

P(t) = (P1(t), P2 (t),- - -, Pa(t))

determines the state of the
population at time t; Q is the
dimension of the space of
states of an “object”; for linear
chromosomes with binary
alleles Q = 2N

Evolution

operator

Space of populations 'P

General evolution equation Expected next

P(t+1)=G(P(t),p) Popuatontorinie
Describes evolution?

p represents a set of parameters associated with  Fixed length strings...
the evolution operator



Abstractions of the principal
Genetic Operators:
E \ “cloning”
Consider: g — M'R,:F y
e S /gl Qh
oct
mutation selection E

recomblnatlon

N Nl
Pt

+

Mixing of genetic materlal



In mathematics...

Finite population model determined by Markov chain. In the infinite population limit
for haploids:

Prlt+1) = My? (1= p) Py(t) + pe X pe(m)A, 50 (m) P (8) P (1))

That's most of standard population genetics and evolutionary computation!
Implicit summation over repeated indices
MI 4 Probability to mutate genotype J to genotype |
Pc Probability to implement recombination

De (m) Probability that given recombination takes place it is implemented
with mode m

Probability to select genotype | Py (1) = ff((%)PI (1)

A\ KL iy - €L | » ”
J (m) Conditional probability for “child” J given “parents” K and L and a mode m



Don’t recombine
it with another Select two “parents”

/ Select an object J K and L

Pi(t+1) = My? (L= pOP5(0) + e X, pe(m)A, () Pic (1) P (1)
/ Y
Mutate it to object | \
Recombine them with
respect to a recombination

mode m applied with probability
p:p.(mM) to obtain a “child” J

 Q coupled non-linear difference equations
« Population genetics has spent the last 70 years
trying to deal with them
* Go to reduced number of loci
- In object basis there are Q3 different A%t - that’s a lot!
* Most of them are O!



Two Questions...

1. Can we “solve” them?
Put them on the computer. Not very feasible for N = 100!

2. Can we understand anything “qualitatively”

from them?

How does genetic dynamics “work”?
What are the effective degrees of freedom/collective modes?



A Formal Solution...Genetic
Dynamics done diagrammatically

Can iterate the equations and represent the solution graphically -

Iﬁ{u’.] = Z,;

Term exclusively due

t It constructive effect
¢ of recombination
DY > Jlt=n
JKL py n=0 oo
K L
t=0

Probability that object J propagates from

{?;,;{L_ F.“J t to t' and converts to | on the way

i [ Measures strength of

1 ~ L - L
E{;ﬂ{ﬂ“ + (M)A, (M) f(t) f(t) interaction between

FPr(t)

objects J, Kand L



What we end up with...

lterate ... by recursively substituting for e untilgettot=20
Example — 2-bits, recombination at one point

Process where 11 is formed by
/ crossover of 10 and Ol att = n for any n

11

11 11 11
.!:1 t 3 11 ~
1 0 o ? 1 oo\ﬁ 01

01 11 10 01 11

Each tree tells us the probability of forming

0 0 +
0 11 by a given process. In principle can see
o }%\/Qg \ which processes are most important. But ...
G tree depth bounded only by t!
Diagrams are pictorial COMPLICATED!
representations of the '
TOO MANY DIAGRAMS

different processes that

can occur (PROCESSES)



Or more succinctly...
using Feynman rules!

7

1) Draw all possible tree diagrams that contribute to creation of “object

2) For each internal line attach a propagator
(FM) '
2 (EM) " Py ()

3) To each vertex © attach a weight

.h{ ||rJ'
F(t) f(t)

3) To each root * attach a factor £r{1’)

Grs(t,t') =(1—p)t*

(p(M) + p( M) A, S5 (M)

bt | =

1

4) Carry out integration over time for all vertices

These rules generate the algebraic expressions that describe the different
probabilistic processes that can occur in the dynamics of an EA



So where have we got?

« Can we really solve the equations
— NO!
« Can we get any qualitative insight

— Yes, objects are obtained by selecting other
objects and recombining and mutating them!

— Actually, NO!



Can we make things simpler?

1. Selection only — can get exact solution in terms
of “objects”, e.g. strings (microscopic degrees
of freedom)

2. Mutation only — can get exact solution by
Fourier transforming; Diagonalizes the
mutation matrix - solutions are “normal modes”
(collective/effective degrees of freedom)

3. Recombination only — can get exact solution in
continuous time limit in terms of “Building
Blocks™ (collective/effective degrees of
freedom)



Beyond the exact solutions

Can we find approximate
solutions “close” to the exact ones?

Exact solutions
aybe even further away?

associated with
coordinate axes

selection

More importantly,
exact solutions are
associated with
completely different
effective degrees of
mutation freedom

recombination



So, where does the RG come In?

. Recombinative dynamics

Selection-Mutation dynamics — the
coarse-graining approach

3. Selection-Mutation dynamics — the
reparametrization approach



Recombinative Dynamics

mE g

In recombination, at every locus,
one of the parental alleles is always
coarse-grained

o \
Every m defines a particular coarse-
graining

Here its “homologous” recombination
which means that the ith locus of the
1 child string comes from the ith locus
m; = J / of a parent string. This formalism

| generalises to the case where the ith
locus of the child comes from ANY
locus of the parent




Recombinative Dynamics

Ayt (m) = H?:l /‘“‘J:fibi(f”fi) = H?:l((l - mi)‘s.;.iﬁi + T”:-.ifs.f.,;bi)
Product of locus-wise projection operators

ZK.i Zbi((l — m_l-)(SJiKi + miﬁ.fibi)

If m,= 0 (take allele for first locus of “child” from first locus of first parent) then

ZK{ ZL.; ((1—?’!’?;.5) {SJ:G -|-TI’.L.E-{SJ‘EL€)PKI K Ky (t) PL1 Y SETRNY Y (t)

= Pk,..J,... )Py, ..n,..Ly(t) ~ Where;means we have
Koot ooy (8) Py sy (£) marginalized the probability

Similarly, form, = 1 at the ith locus

= PKI"'*i"'KN (t)Pbl"'Ji'“L_-'\-' (15)



Recombinative Dynamics

Pr(t+1) = M7 (1= pe) Py(t) + pe 22, pe(m) Py (8)P] (1))

So?! Where’s A\;%- gone?

Every m, i.e., coarse-graining mode, for given target object J
defines a “Building Block™ J,. At the same time this uniquely
defines a conjugate Building Block ./ ;5 that is the set
complement of J in J,,.

This coarse-graining can also be implemented as a coordinate
transformation using a transformation matrix

0 LY
\_ (01
In this basis A;X-(m) for a given m has only one non-zero ) 1 1
entry and it's on the skew diagonal



Recombinative Dynamics

* Thus we see how recombination “works” by
taking BBs and recombining them into strings

« If A;(m)=P;—P; Py (Selection Weighted
Linkage Disequilibrium Coefficient) > 0 then
recombination is bad for the formation of that
string and good if < 0 (more construction then
destruction.

« But if we want to “solve” the dynamics have to
know what happens to the BBs! E.g. what”s the
equation for | ? Need to coarse grain the string
equation




Recombinative Dynamics

Pjﬂl(t) - Z{i:?ﬂ{_:l} PIIIB'“I?:"'IN
!

Projection operator (1, 1") R(n,n") = Rn,n")R(n",n")

Renormalization (semi)-group

Pr, (t+1)=M,;""((1 = p)P; (t)+pc>.,, pe(m")P;  (t)P;

= T

Vo

BBs of the BB J,,

,(£))

Note the form invariance under the coarse graining
Strings are built up from BBs which in turn have their BBs
which ... the hierarchy ends at BBs with only one locus, e.g. ***1*****



Recombinative Dynamics

Go back to the recursive solution attempted when examining the dynamics

in the string basis. i.e. lterate ... by recursively substituting for ® until
gettot=20
Example — 3-bits 1-point crossover
11 111 )
Pyq(t) = /1\ /K
11. 1** *11 1* *x 1* **1 1** 1= 0
m=100 m=110 m = 110 + 111
| t
_ . 1+ Probability that “Building
- G”{""‘ '! ] Block” | propagates fromtto t’
|'t’ Measures strength of
1 - . frie fr |rI13terI<'alctiorll3 Ibetl\<Ne?an
O = —iplA ol M) Lt | = “Buildin ocks” J,
E{‘”{ ”_Hj{f} (M) Jr{" fit) andLg
Ke = {,r] Skew-diagonal — only

conjugate “Building Blocks”
Interact!



Recombinative Dynamics

Each tree tells us the probability of forming 111 by a
given process. In principle can see which processes
are most important. Tree depth bounded by N or t —
whichever is smaller. MUCH SIMPLER THAN STRING
(“OBJECT”) BASIS! MUCH FEWER DIAGRAMS
(PROCESSES) TO CONSIDER.

111 111

Example: 1-point o (1=p)tT
crossover, no — B " N
selection or L= pe) P pe De

. ® — {1 - _}.'t
mutation 111 o 9

Pi..(0) P.11(0)
Moral: No point putting Iin

“ “puilding blocks” of higher order =  2(1 - p, ({1— Pyt _(1-p, )
than one!
11*0\ = 2(1-pe) ({1 —pe) —2(1- }r/ ) P1uu(0)Pu1a(0) Py .1(0)
1** **1

Dominates in long time limit — Geiringer’s theorem



Recombinative

Why recombination?

Dynamics

Recombination itself imposes the idea of a

Building Block as the appro
degree of freedom

A recombination mode/mas
the Building Block is

nriate effective

K determines what

The fitness landscape when “modular” imposes
the idea of a "modular” block of loci

Recombination evolves the

recombination respects the

recombination

distribution (p.(m)) so that Building Blocks and
andscape blocks are compatible, i.e.

landscape blocks



Recombination and Epistasis
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Fig. 1. Value of A at different generations for two-locus two-allele system as a function of fitness
landscape, characterized by b and e¢. The initial population is Pyg(0) = 0.8999, Py;(0) = 0.05,

A at t=2
4 X S 77 7 7 FTTTTTT7
X =t /};///X/ii”,/ o
_/), 0077771 Multiplicative landscapes
2L - - - \—»:-7-/;/%/;—217’/%
N '7//—-/ STA /177 ///, /////////
W A sy
G 777 —Additive landscapes
-2 —
=), 0 N _ L
b Negative epistasis
A at t=10
4 | | /| Full parameter
A space for two-locus
4 |  system explored
0 - - -
Recombination is
! ‘ advantageous only
=1 o I 2 for modular or redunant

landscapes — just like
we find in nature!

Py3(0) = 0.05, P;1(0) = 0.0001. The A = 0 plane has been marked to distinguish between
conditions in which recombination is favorable (A < 0) or not. The curve on the plane is ¢ = b2,

the condition for a multiplicative landscape.



Selection-Mutation dynamics — the
coarse-graining approach

A simple one-locus example:

Can we coarse grain an n

t=zn Coarse grain Coarse grain ,
. generation problem to a one
t=n =n/2 generation problem?
| 4 4 (=2 1 Much easier to solve
the dynamics over only

::2 t=2 t=1"""" =0 one generation!
t t=1 =0 =0 Xi(t) - unnormalized

t=0 Rescale Incidence vector

P — mutation rate

(L{Hm) ({pml pfo )"’(_L{u)
_tﬁ{lf. -+ E] - P.Jrl {]. — F]fﬁ _Y.ﬂ.{”

Evolves locus two time steps in landscape f(1), f(0) with mutation p




Selection-Mutation dynamics —
the coarse-graining approach

(-‘il{r'-”rl]) ({l—rfﬁl.f{ th J )(L{ﬁ)
Xo(t'+1) ) _ (1—mo)fo ) \ Xolt)

—~—

Evolves bit one time step in “renormalized” landscape (1), f'(0)
with asymmetric mutation rates p’(1) and p’(0)

fi=(1—p)ff +pifofr

fo = (1—p)fg +pofofi

Equivalent dynamics e 1
(all we did was “change > Py =P (( (li}i]r{;]fl f+ r}f}zm)

names’!, i.e. “renormalize”) (1 —po)fo+ (1— pl}fl)

(1 —po) fo + pofi

?}{i = Po (



Selection-Mutation dynamics — the
coarse-graining approach

Evolution of mutation/selection dynamics over n time steps with
fitness landscape f(1), f(0) and mutation rates p(2) and p(1) is
same as that of a system with “renormalized” landscape and
mutation rates, f’(1), f(0), p’(2), p’(1) over n/2 time steps!

U
UNIVERSALITY

Fixed points of Renormalization Group transformation:

In(f(1)/f(0))| = O, p(1) = p(0) = 0; no selection/mutation — “FERROMAGNETIC”
lIn(f(1)/f(0))| = infinity, p(1) = p(0) = 0, strong selection — “FROZEN”"
In(f(1)/f(0))| = constant, p(1) + p(0) = 1; neutral evolution — “PARAMAGNETIC”



Selection-Mutation dynamics — the
reparametrization approach

P(t + 1) = MFP(t)

Write 7 = (1 + e0F) and develop perturbation expansion in €

With zeroth order exact solution being that of the mutation only system —
Fourier/Walsh modes; get solution for the Fourier transform of the
unnormalized frequencies, but...e.g. for one locus

1 —(1—2p)
2p

To(t) = (1 + Eﬁ,“x) Z0(0) + € ( ) Foli (0)

-~ I —(1-2p) -
2y () = (1 - EP}t (1 + E.?:th) 21(0) + € ( [ 2p . ) (1—2p)F, Ui‘“(”)

\ 2

Secular terms that invalidate perturbation theory



Selection-Mutation dynamics — the
reparametrization approach

ot _ 7 iy
Use the RG to resum the secular terms: '”(“) o ZI: Z {T}';’"J {T)

/

2 I ~r+l 7 T (g o (r Renormal?zed coefficients o
Zf: J( Z (1) (7) as a function of a renormalization

scale (time)
RG equation for the coefficients

Iry =6, + Z el (1) Perturbative ansatz for the renormalization
o constants

Determine the coefficients a,; by demanding the removal of the secular terms
m( . (13( — _tE0 Ly — gWimy =0
agy (1) = ayy (1) = —7F, ayy (T) = “m (7)

Gives exponentiated form  @7(7) = (1 + eF; 1) 7i7(0)



Selection-Mutation dynamics — the
reparametrization approach

e(1—2p)F) (f-(l—fﬁ']f'.f v.-'jj}__ [:[]:] | éji-;}fj’;“’j['[]']) [:1 EEJ:]f

2p

P (t _
1(t) = T

V2 1 Pr(0)(1 — 2p)t

2p

Completely exponentiated form which agrees with exact solution to O(g)

Note that what we are doing here is exponentiating the perturbation series
to get ALL the eigenvalues of the “transfer matrix”



Conclusions

The theory of Genetic dynamics is of interest in both a natural (as an
abstract simplified representation of a “complex” systems) as well as
an artificial setting

Traditional goals for theory: “Solving” for the dynamics and/or getting
“understanding” are not easily met

A “physicsy” approach can lead to substantial progress

Coarse graining
|dentify effective/collective degrees of freedom

Recombinative dynamics most appropriately understood in terms of
“Building Blocks”

Diagrammatic formulation
RG used to relate different levels of coarse graining

RG can be explicitly implemented in both its coarse graining and
reparametrization contexts

Several novel elements involved that have not been treated in statistical
physics



Conclusions

Criticality has played a miraculous role in statistical mechanics and
condensed matter theory leading to huge conceptual and theoretical
advances

It appears in many different contexts in the physical, biological and
social sciences.

Power law scaling exists because there is no characteristic scale -
whether it happens a surprising/unsurprising amount is somewhat
subjective - like “emergence” itself.

Maybe the puzzle is better seen by asking not why there are so
many systems without a scale (statistical physics) but why there are
SO0 many systems with a scale (particle physics).

Real systems always have multiple length scales - crossovers.

The RG remains out best, last hope for the
mathematical modelling of such systems



