Complexity and Intelligence: Perspectives and Challenges

Chris Stephens,
Instituto de Ciencias Nucleares, UNAM PERSPECTIVAS EN SISTEMAS COMPLEJOS: SIMULACION SOCIAL 17-18 October 2005

Complexity and Intelligence: What are they?

Phenomenology and taxonomy

Physical

Complexity/Intelligence

So what do we know for sure is complex and intelligent?

Well, what about this?

No?...this then...?

And
this ...?

And these?

Model illustrating the formation of a misfolded species (M) from a folding intermediate (I). The region of the protein that misfolds is shown in red. The misfolded protein itself, or a self-assembled form, may be toxic to cells, leading to disease. The black arrows represent the relative rates of the various conformational events under native physiological conditions in the absence of mutation. The blue dash arrows represent the possible effects of mutation.

And what about these?

Polystyrene on a silver surface
n=3, l=2 energy level of H

Symbolic

 Complexity/IntelligenceTo be, or not to be--that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune Or to take arms against a sea of troubles And by opposing end them. To die, to sleep-No more--and by a sleep to say we end The heartache, and the thousand natural shocks
That flesh is heir to. 'Tis a consummation
Devoutly to be wished. To die, to sleep--
To sleep--perchance to dream: ay, there's the rub,
For in that sleep of death what dreams may come
When we have shuffled off this mortal coil,
Must give us pause.

Amino Acid Sequence of hJHBP

Human nucleotide sequence

AhAAGAARAGGTTAGARAGATGAGAGATGATAAAGGGTCCATTTGAGGTTAGGTAAT ATGGTTTGGTATCCCTGTAGTTAAAAGTTTTTGTCTTATTTTAGAATACTGTGACTA TTTCTTTAGTATTAATTTTTCCTTCTGTTTTCCTCATCTAGGGAACCCCAAGAGCAT CCAATAGAAGCTGTGCAATTATGTAAAATTTTCAACTGTCTTCCTCAAAATAAAGAA GTATGGTAATCTTTACCTGTATACAGTGCAGAGCCTTCTCAGAAGCACAGAATATTT TTATATTTCCTTTATGTGAATTTTTAAGCTGCAAATCTGATGGCCTTAATTTCCTTT TTGACACTGAAAGTTTTGTAAAAGAAATCATGTCCATACACTTTGTTGCAAGATGTG AATTATTGACACTGAACTTAATAACTGTGTACTGTTCGGAAGGGGTTCCTCAAATTT TTTGACTTTTTTTGTATGTGTGTTTTTTCTTTTTTTTTAAGTTCTTATGAGGAGGGA GGGTAAATAAACCACTGTGCGTCTTGGTGTAATTTGAAGATTGCCCCATCTAGACTA GCAATCTCTTCATTATTCTCTGCTATATATAAAACGGTGCTGTGAGGGAGGGGAAAA GCATTTTTCAATATATTGAACTTTTGTACTGAATTTTTTTGTAATAAGCAATCAAGG TTATAATTTTTTTTAAAATAGAAATTTTGTAAGAAGGCAATATTAACCTAATCACCA TGTAAGCACTCTGGATGATGGATTCCACAAAACTTGGTTTTATGGTTACTTCTTCTC TTAGATTCTTAATTCATGAGGAGGGTGGGGGAGGGAGGTGGAGGGAGGGAAGGGTTT CTCTATTAAAATGCATTCGTTGTGTTTTTTAAGATAGTGTAACTTGCTAAATTTCTT atGigacattancanatahanadgCtcttttantattagatan

and here?

 aaaa aaaa aaaa aaaa aaaa aaaa aaaa. .."crystalline"
asmjgre fj sdjf s rege geoiie rgeasdffi... "amorphous"

100111011001111110101110010101110111001010010 ... "?"

If you are married or are a man and woman living together as if you are married you must claim jointly ...

How might we even recognize something as being "complex"?

So, maybe we can agree on what is definitely complex/intelligent, and what is definitely not complex/intelligent. But where do we change from one to the other?

On the "Edge of Chaos" in "micro"-physics?

Barkhausen effect - "avalanches" of magnetic domains

Typical critical phenomenon showing

 collective behavior and scaling $\mathrm{Y} \sim \mathrm{X}^{\mathrm{a}}$ But...- Only one important length scale - the correlation length - that governs the scale of "collectivity"; Scale invariant near critical point (phase transition) - maximal "collectivity"
- Only one type of effective degree of freedom - a magnetic domain "avalanche", but ...
" Complex? Once the spectrum of "avalanche" sizes is given then there's nothing much more to be said. Not very interesting living on the "Edge" in physics!
- The same is true for other canonical critical or self-organised critical phenomena

What about a "symbolic" Edge of Chaos?

the e....

Parameter to distinguish between the ordered and disordered states...
s - where:

Zipf's law may be stated mathematically as:

$$
f(k ; s, N)=\frac{1 / k^{s}}{\sum_{n=1}^{N} 1 / n^{s}}
$$

where N is the number of elements, k is their rank, and s is the exponent characterizing the distribution. In the example of the frequency of words in the English language, N is the number of words in the English language and, if we use the classic version of Zipf's law, the exponent s will be equal to unity. f (k, s, N) will then be the fraction of the time the $k t h$ most common word occurs.

In Hamlet (and more generally in natural language) s is about 1

So, natural language is on the "Edge of Chaos"!

Is that now an adequate description of Hamlet? That the frequency distribution of words is scale invariant with exponent s?

NO!

So what's in Hamlet that isn't in a "sandpile"?

Returning to the physical world, what about more "macro"- phenomena? Like...

Complex?

...or just complicated?

A physical phenomenon; underlying dynamics governed by Navier-Stokes equation (non-linear PDE)
Chaotic beyond 15 day horizon
"No" biological (human) component - Physics paradigms appropriate
So what about something with a human component?
Like...

...a stock market?

Geometric Brownian motion Black-Scholes equation - Diffusion equation type PDE

Rational agents
Market efficiency
Equilibrium economics

Still very "physicsy" paradigms

Complexity and
 Intelligence: What are they?

Definitions

- in computer science...?

- Computational complexity - refers to the computational resources necessary to solve a given problem
- Descriptive complexity - of a string is the length of the string's shortest description in some description language

In both manifestations the most "complex" problems are random!

Some other "definitions"...

- A complex system is a highly structured system, which shows structure with variations (Goldenfeld and Kadanoff)
- A complex system is one whose evolution is very sensitive to initial conditions or to small perturbations, one in which the number of independent interacting components is large, or one in which there are multiple pathways by which the system can evolve (Whitesides and Ismagilov)
- A complex system is one that by design or function or both is difficult to understand and verify (Weng, Bhalla and lyengar)
- A complex system is one in which there are multiple interactions between many different components (D. Rind)
- Complex systems are systems in process that constantly evolve and unfold over time (W. Brian Arthur)
- "Complex things exhibit complex behavior" (Parisi)

You always see: "many degrees of freedom" and "non-linear" - that just about covers everything! Even quantum field theory, where we have an infinite number of degrees of freedom.

Effective Complexity (Gell-Mann)

- Descriptive Complexity, but measured not on an observed phenomena but through a subjective interpretation of interest to the observer, i.e., a model - an algorithm for specifying a probability distribution over the observed data.

But this sounds very subjective, as it depends on our model, how good it is and how well we can test it.

Consider the following "simple" dynamical model...

$$
\mathbf{d}_{i}(t+\Delta t)=\sum_{j \neq i} \frac{\mathbf{c}_{j}(t)-\mathbf{c}_{i}(t)}{\left|\left(\mathbf{c}_{j}(t)-\mathbf{c}_{i}(t)\right)\right|}+\sum_{j=1} \frac{\mathbf{v}_{j}(t)}{\left|\mathbf{v}_{j}(t)\right|}
$$ effective repulsion and attraction between "particles"

$\hat{\mathbf{d}}_{i}(t+\Delta t)=\mathbf{d}_{i}(t+\Delta t) /\left|\mathbf{d}_{i}(t+\Delta t)\right| \quad \mathrm{c}_{i}(\mathrm{t}), \mathrm{v}_{\mathrm{i}}(\mathrm{t})-$ position/direction vectors of a "particle"

$$
\mathbf{d}_{i}^{\prime}(t+\Delta t)=\frac{\hat{\mathbf{d}}_{i}(t+\Delta t)+\omega \mathbf{g}_{i}}{\left|\hat{\mathbf{d}}_{i}(t+\Delta t)+\omega \mathbf{g}_{i}\right|}
$$

Equation for "charged" particles following an external force vector g_{i}

Couzin, I.D., Krause, J., Franks, N.R. \& Levin, S.A. (2005) Nature, 433, 513-516.

Does this represent a "complex" system?

- So, we are using a non-complex model to describe a complex system
- The complexity is associated with a range of behaviors and functions
- The model only describes statistically one restricted aspect of this rich complexity
- Need a more complex model to describe more complex behavior

Moral: It's important to distinguish between a description of complexity and a non-complex description of a phenomenon or behavior associated with a complex system.

Complexity - Subjective or Objective?

How Weather Affects Your Life

Health
Travel

Driving

Events
Recreation
Home \&
Garden

World

News
Weather
Tools
Interact
Education
Multimedia
Shopping
TV - What's
On
Mobile

Health Forecast, Allergies, Skin Protection, Air Quality, Aches \& Pains, Cold \& Flu, Fitness
Travel Forecast, Business Traveler, Vacation Planner, Aviation
Driving Forecast, Interstate Forecast, Scenic Drives, Auto Advisor, Green Vehicles, Vehicle Safety
Events Forecast, Sporting Events, Special Events
Recreation Forecast, Golf, Boat \& Beach, Outdoors, Ski
Home \& Garden Forecast, Home Planner, Lawn \& Garden, Scotts Lawn \& Garden Center, Schoolday
World Weather Forecasts \& International Sites
News Center, Storm Watch, Tropical Update, Storm Stories, Road Crew
My Page, Desktop, Email, Phone, PDA, Pager, My Site
Photo Gallery, Boards \& Forums, Contact Us
Weather Classroom, Dave's Dictionary, Weather Encyclopedia, Glossary, SafeSide, Rays Awareness
Video Forecasts
The Weather Channel Store, Hot Offers and Cool Deals
Storm Stories, Schedule, Road Crew, Personalities, Music, Forecast Earth

Downloads, Messaging, PDAs

What's complex? The underlying phenomenon or just our description of it?

The underlying phenomenon is not complex but its effects at the human level and our description of them are!

Intrinsic versus extrinsic complexity

Complexity - Subjective or Objective?

What's complex? The underlying phenomenon or just our description of it?

If markets are "efficient", then they're described by a "random" process and "predicting" the market is then no different than counting elephants in the clouds or seeing people's faces in a fire!

> "Complex" Human Behavior
"Simple"
Random
Price
Movements

Weather: \begin{tabular}{l}
"Simple"

Navier-Stokes
dynamics

\end{tabular}

"Complex"
Human
Behavior

And what about intelligence?

EXW

DEzFBLE

RS6000SP
-4 18

Who plays chess better?
Who writes better? Who reads better? Who runs better? Who can find food better? Who can find shelter better? Who can avoid danger better? Who can avoid predators better? Who can communicate better? Who can keep their own temperature constant better? Who can play cards better? Who can play tennis better? Who can make general mathematical models better? Who can make tools better? Who can drive a ...

Who has more complex behavior? Who is more "intelligent"?

This is a general purpose controller invented and patented by "GP" that surpasses many controllers presently used in industry
Who's GP?
Genetic Programming (Koza) - a branch of Evolutionary Computation where populations of computer programs are evolved in search of "fitter" programs

More impressive than "Deep Blue" because A/l is bigger A=intelligence out; l=intelligence in

But...

It is still only doing one thing well!

The (actual) Difference between

 Artificial and Biological IntelligenceAl systems do one very special thing very well

- Bl systems do many things very well
- Al systems are not complex
- BI systems are complex

BI is a naturally emergent property of complex systems

What distinguishes the things that we "agree" are complex from those that we "agree" aren't complex?

- More complex "behavior" (the "phenotype")
" A "hierarchy" of many different length scales
- Interactions at different length scales are different
- Effective degrees of freedom at different length scales are qualitatively different
- Systems are adaptive
- Dynamical evolution depends on many diffierent rules/strateaies (genotypic versus phenotypic rules)
- Systems "learn" (feedback from environment to system which is then used to update rules)

Theoretical physics as it currently stands does not contain the mathematical and conceptual elements necessary to understand these issues...

States
P(t)

$$
\begin{aligned}
& x(t+1)=H(x(t)) \\
& y(t+1)=H(y(t))
\end{aligned}
$$

Not all states are created equal (Not Physics)

$$
\begin{aligned}
& x(t+1)=H(x(t)) \\
& y(t+1)=G(y(t))
\end{aligned}
$$

G not equal to $\mathrm{H} \longrightarrow \mathrm{G}(\mathrm{y}(\mathrm{t}))$ not equal to $\mathrm{H}(\mathrm{y}(\mathrm{t}))$

In biological, economic and social systems, organisms exhibit a rich array of (survival) STRATEGIES (rules/models)
The dynamical state of an individual at $t+1$ depends on not only on the state of the individual and others at t but also on which strategy (update rule) is chosen at t, which in turn depends on the update rules of others at t \longrightarrow need to work in the space of states and strategies/rules/models, but ...
We don't a priori know what that space is!
Also, the payoff/fitness for a strategy is RELATIVE not absolute - depends on the strategies used by others a fixed fitness landscape is inappropriate; Fitness should be an emergent property

Theoretical Challenges for Modeling Complex Systems

- Develop frameworks within which one can work in the space of "laws" and states
- Understand what are "necessary" and "sufficient" conditions for complexity
- Statistical inference problems of observing complexity can we speak the lingo?
- Work in a "game" where the rules change all the time and we don't know the payoffs
- Fitness as an emergent phenomenon
- Modularity - how to understand how diffferent parts of a system can do different things then join together as "building blocks" to form more complex things
- Better understand the genotype-phenotype map
- Understand how to coarse grain (renormalization group) to see the emergence of effective degrees of freedom

Practical Challenges for Modeling Complex Systems

- Develop systems that can do multi-tasking adaptively
- Develop systems that exhibit open ended evolution, i.e., continuous innovation
- Develop systems where fitness is not specified
- Develop systems where modularity within a population emerges naturally - how do teams arise?

Conclusions

- There are no complex "physical" systems
- The Edge of Chaos a la critical phenomena is not a useful concept for understanding complexity (the "Edece" for life is very wide from $10^{-8} \mathrm{~m}$ for a rhinovirus to the order of the size of the earth)
- BI is intrinsically associated with complexity and emergent from it
- To understand complexity we need new mathematical, conceptual and computational tools - we really have very little idea how to describe complexity either phenomenologically or mathematically (we can't even agree what it is!)

Warning: it took nature billions of years to develop complex/intelligent systems. Why do we think we can do it quicker? Also, maybe our model will have to be nearly as complex as the phenomena we're modeling.

