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1) Introduction 
 
Every major problem that humankind faces can be linked to the consequences of human 
behaviour. As well as obesity, chronic and other lifestyle diseases - addictions, loss of 
biodiversity, climate change, pollution, violent conflict, fake news and others, all arise from 
how we conduct ourselves in our decision making, at both the individual and collective 
levels.  
 
The universality of these global problems, that are a direct result of our behaviour, 
demonstrates that underpinning these problems there exist, despite its complexity and 
richness, quite universal tendencies in human behaviour that are produced by biases that 
orient us to act in certain fixed directions, often with adverse consequences. Although many 
of these biases have a biological, and, consequentially, an evolutionary basis [1], they are 
also subject to modulation by interaction with the environment. In other words, some 
behaviour is changeable. Indeed, recognising and quantifying the degree of plasticity of a 
given adverse behaviour is an important prerequisite for ameliorating its impact. 
 
It is important to recognise that only Complex Adaptive Systems (read - living systems) 
exhibit behaviour, conduct themselves and make decisions. Complexity is manifest in the 
immense multifactoriality of individual decisions themselves, which depend on a multitude 
of different factors, ranging from our genetic and epigenetic beginnings to the influence of an 
entire life history of interaction with a constantly changing social, psychological, economic 
and political environment. On the other hand, adaptability is associated with the fact that 
decisions and behaviours can change according to both the internal state of the decision 
maker and the state of the environment. 
 
The highly multifactorial, adaptive nature of decision-making has meant, until recently, the 
impossibility of adopting a more data-driven approach, due to the difficulties of obtaining the 
relevant data across a host of different scales, associated with multiple disciplines and 
multiple experimental protocols, that could begin to represent the gamut of factors that 
influence our decisions. A systemic, transdisciplinary understanding of human behaviour is 
impossible without the integration of such multi-scale, and therefore multi-disciplinary, data.  
  



Decision-making then can only be understood from a truly systemic point of view. Such 
systemic approaches have been gradually adopted in fields such as systems biology, where it 
has been recognised that a systems-based, integrative approach is necessary in order to 
understand, for instance, collective behaviour at the cellular level. These more integrative 
approaches have been associated with the concept of an “ome” – metabolome, proteome, 
genome, transcriptome etc. – where the totality of factors within a given data type is 
considered [2]. Most “omes”, however, look principally at the molecular level. Genomes, 
epigenomes, proteomes, transcriptomes and metabolomes are all examples where the goal is 
to characterize the full set of molecular components and their interactions for a given ome. 
So, the “ome” concept is associated with trying to look at the totality of factors associated 
with a given system but, importantly, viewed from a certain perspective – the “micro” – 
where the structures that participate, and their interactions, are at the molecular level.1   
 
Other omes have been suggested, such as the infectome [3], or the physiolome [4]. These 
also, however, though not being necessarily at the molecular level, are restricted to a certain 
scale – such as the scale of organs and tissues in the case of the physiolome. Of course, one 
must ask - what are the advantages of such an omic perspective? One important advantage is 
that such an approach is much less reductionist than non-omic perspectives. However, 
although an omic viewpoint is certainly more integrative than a non-omic one, the current 
omes are, as mentioned, scale restricted, in that they consider system components at a 
particular scale.  
 
Taking a “totality of factors” interpretation of an ome, in this chapter we will discuss the 
concept of a Conduct-“ome”, as being the appropriate framework in which to study human 
behaviour. Moreover, as we will see, as conduct is intimately related to the notion of 
prediction, we will frame our discussion of conduct in the context of probabilistic prediction 
models, P(C|X), for a given conduct C conditioned on the totality of factors, X, that affect it. 
This requires an integration of phenomenological elements that extend far beyond the micro-
realm of bioinformatics, requiring a multi-scale approach that includes not only genetic and 
epigenetic elements, but, also psychological, neurological, social, physiological, clinical, 
socio-economic, socio-demographic, socio-political and philosophical elements, among 
others.   
  
Although the Conductome is a general concept, applicable to any conduct and its potential 
association with a given problem – climate change, obesity, violence etc. as the emphasis of 
this book is on obesity, we will construct a theoretical framework in which to analyse and test 
the Conductome that uses obesity as a relevant context. In particular, we will propose a 
mathematical framework that is Bayesian in nature and construct an explicit example of a 
Conductome, associated with a particular conduct – C = “sedentariness” – that is a relevant 
risk factor for the development of overweightedness and obesity and, subsequently, metabolic 
disorders, such as type 2 diabetes.  
 
Although we will emphasize the Conductome in the context of obesity, it is necessary to first 
develop a theoretical framework in which to frame the discussion. Thus, the structure of the 
chapter will be as follows: we will first discuss in section 2 “what is behaviour?” In section 3, 

 
1 Interestingly, physics, implicitly, has always taken such an omic approach. The complete set of components of 
fundamental matter and their corresponding interactions have been fully characterised and we know a great deal about how 
different structural levels of matter – nuclei, atoms, molecules etc. emerge from these components. As with the biological 
“omes”, however, the physical “omes” are restricted to a given scale.  
 



we argue that behaviour and conduct can only be properly understood from a probabilistic 
perspective and as a problem in statistical inference. We therefore lay out the foundations of 
a formal, probabilistic framework within which decision making and conduct may be better 
understood. In section 4 we further explore the development of a mathematical framework in 
which decisions and decision-making can be better understood centred on the notion of P(D | 
X), the probability of a decision D conditioned on a set of factors, X, that influence it, while 
in section 5 we consider a pictorial representation of this probability – the Decision 
Landscape. In section 6 we introduce the Conductome itself using sedentariness as a use case 
and in section 7 draw some conclusions. 
 
 
2) What is behaviour? 
 
Given that we are concerned with behaviour and conduct it is pertinent to first ask: What is 
behaviour? We cannot, of course, provide a comprehensive review here of the subject matter 
associated with answering this question. We will, rather, introduce only what is necessary to 
develop our narrative. There is no definition of behaviour accepted universally across 
multiple disciplines. However, a common and representative characterization in biology is 
that [5]:  
 
“behaviour is the internally coordinated response (actions or inactions) of whole living 
organisms (individuals or groups) to internal and/or external stimuli.”  
 
While the definition to be found in the dictionary of the American Psychological Association 
[6] posits 
 
“behaviour is an organism’s activities in response to external or internal stimuli, including 
objectively observable activities, introspectively observable activities and nonconscious 
processes.” 
 
From both perspectives, behaviour is considered to be an association between a cause 
(internal/external stimuli) and an effect (response - action or inaction). The question then is: 
just which causes, effects and cause-effect relations may be considered behaviours? First, 
what is an “effect”? How would we characterise it? We consider an effect to be a change in 
the state of a system, which we will denote as the “subject”, S, and is a crucial component in 
the description of any system. A state, X(S,t) = (X1(S,t), X2(S,t),…, XN(S,t)), may, in 
principle, be specified using a set of state variables (X1, X2,…, XN). An effect can then be 
defined as a change in the state of the system, such that X(S, t) à X(S, t+1).  
 
It is a most important and fortunate fact that the states of non-living systems can generally be 
described using a small set of relevant state variables and/or labels and, in this way, we may 
delineate all possible states of a system – which we call the state space. For example, from a 
mechanical perspective, the centre of gravity of a system, and its coordinates X(S, t) = 
(X(S,t), Y(S,t), Z(S,t)), is an important descriptor of an object; one that can be equally 
applied to both living and non-living systems. However, living systems are associated with an 
almost limitless set of other potential state variables, that extend from the micro, sub-cellular 
level, to the macro, whole organism level, and beyond, to the group level.  
 
For example, beyond the position of their centre of gravity, how might we describe the state 
of a person? Happy/sad, male/female, old/young, hungry/satiated, sitting/standing, fat/thin, 



hispanic/caucasian, big/small, heart beating fast/slow, diabetic/non-diabetic etc? Furthermore, 
in physical systems we can arrive at a quite satisfactory description of its state, using only a 
few variables, whereas in living systems we have no a priori fixed, limited set of relevant 
state variables that offer a “complete” description, at least for an interesting subset of 
phenomena associated with a particular scale. Additionally, in distinction to non-living 
systems, in living systems, we have little to no idea, even conceptually, as to how to map an 
organism’s macrostates to microscopic physical variables.  
 
Of particular interest is how a state changes over time. For example, how normal weight 
becomes overweight, how hungry becomes satiated and how physically active becomes 
sedentary. States change according to a state update rule, Fc, that tells us how the state X(S, t) 
changes into a new state X(S, t+1) = Fc(X(S, t)) at a later time, t+1, due to the presence of a 
“cause” c. This state change can be mapped into an action, A, such that A = A(X(S, t+1), 
X(S, t)), the action A being that which engenders the change of state. As an example, 
consider the centre of gravity coordinates as a partial description of a person. If we had that 
information, we could deduce an immense amount about the behaviour of that person: where 
they eat, when they eat, if they exercise, whether they take the stairs versus the elevator, ad 
infinitum. Of course, in order to do this, we need to have knowledge about the different places 
where they spend time. For example: is it a gym or a restaurant?   
 
For physical systems, generally, there is only one relevant update rule for X(S, t) – think of 
falling from a tree, where Newton’s universal law of gravitation is the only update rule that is 
relevant for your centre of gravity! This update rule, however, would not tell us anything 
about the accelerated heartbeat that you would experience, or whether you screamed in fear. 
Newton’s law is universal, meaning that everyone and everything is equally subject to it. It 
acts on our centre of gravity in the same way. Energy conservation is also universal, and this 
is a fundamental starting point for considering the role of energy imbalance in obesity. In 
principle, if we could fully understand the complex physiology of energy conversion, we 
could predict how much weight, considered as a state variable, a person would gain after 
eating a certain food, considered as a cause.  
 
In contrast, think of the update rule for X(S, t) that governs who will exercise today or what 
and where they will eat. What could be some relevant state variables? The position of the 
person is one possibility, of course. However, there is no analogue of the Law of Gravity that 
determines where we will eat! The most appropriate framework in this case is akin to game 
theory [7], such as in Tic-Tac-Toe or chess, where a choice of different update rules is 
possible, with the update rule in that case being identified with a “strategy”, with each 
strategy being associated with a decision rule that can lead to different outcomes. Of course, 
we may ask: How does one arrive at a given update rule? The Theory of Planned Behaviour 
[8] is one area that is concerned with this question. From the point of view of complexity, an 
important question is: What does my update rule depend on? This will usually depend on a 
large number of factors. For instance, in the case of whether a person will exercise or not, if 
their position is far removed from the position (coordinates) of the place where they exercise, 
then this may be a cause as to why they do not exercise. On the contrary, if they are close, 
this can be a cause that leads to exercise. Whether they will or won’t exercise, as we will see 
below, can also depend on their occupations, their economic situation, their past habits, their 
family and friends’ habits, and a host of other factors. At the level of the individual, it can 
also change from one moment to the next, depending on whether you are tired or not; 
whether you are late leaving from work or not; if you can find a parking place, and many 
others.  



 
We will take then a behaviour to be associated with choices among multiple update rules that 
change the state of a subject. In non-living systems, we claim that there is only one response, 
one update rule, that effectively governs the link between cause and effect, whereas in living 
systems there is more than one potential response.   
 
 

a) The difference between behaviour and conduct 
 

Why do we use Conductome and not Behaviour-ome? To answer this, consider a behaviour – 
eating. We can observe that there are associated patterns: when we eat, where we eat and 
what we eat. However, there is a “why” associated with this action, and this “why” is not 
explicitly present in the above definition of behaviour. To account for this “why” we prefer to 
use the word conduct rather than behaviour, as its etymology 
(https://www.etymonline.com/word/conduct) “to guide, accompany and show the way” 
captures the idea that there is a reason “why” stimulus and action are linked. Of course, this 
guide that “accompanies” us and “shows the way” is, indeed, evolution, in all its forms. Thus, 
when ghrelin levels are high (cause-stimulus) we may search for food (effect-action), with 
the cause-effect pair constituting the behaviour [9]. However, it is the evolutionary pressure 
from natural selection that has gradually guided individuals to search for food when hungry 
that provides the “why” behind this universal behaviour. It is evolution that allows us to 
interpret a behaviour as a conduct, and it is through conduct that evolution principally works, 
both at the genetic and cultural levels. It is also through conduct that an organism interacts 
with its environment, and it is changes in conduct that are either themselves adaptive or 
engendered by those structural adaptations in the organism that lead to observable changes in 
behaviour, i.e., changes in the observed effect given a certain cause.  

From a human perspective, if we think of behaviours as being the actions a person 
demonstrates, then conduct can be thought of as the relationship between the action and the 
normative environment in which the behaviour is exercised. This normativity can be 
biological in nature – eating, reproduction etc. – or cultural, where, for example, a particular 
behaviour might be acceptable in one culture but not in another. Of course, the complexity of 
human conduct is enormous, as is manifest in the almost limitless number of different 
behaviours available to humans, both as individuals and as a species. However, there are 
certain behaviours that are fundamental and are in common with other organisms [10]. In 
particular, those that have their roots in survival, such as feeding, reproduction, evading 
threats etc.  

As a biological species then, conduct is everything. Beyond the biological, as emphasized, 
human conduct is at the heart of the vast majority of social and health problems that we face, 
with obesity clearly being overwhelmingly a behavioural/conductual problem, with the 
relevant behaviours being overconsumption and sedentariness that, in their turn, lead to 
energy imbalance. When such problems are viewed from a behavioural standpoint, we tend to 
speak of behaviour change [11]. However, without a more thorough understanding of why a 
certain behaviour is exhibited it is impossible to predict how easily it may be changed, as we 
have no idea about the normative restrictions that our biological and cultural evolution have 
imposed. Thus, it is more appropriate to speak of conduct change as this accounts for the fact 
that we must distinguish between individual and normative environment and must understand 
the why behind the behaviour.    



 

3) Behaviour and conduct as statistical inference problems 
 
Behaviour according to the above definition is the link between a cause (external/internal 
stimuli) and an effect (internally coordinated response). In principle, this can be modelled 
mathematically as a change of state of a subject S due to a cause c: X(S, t) à X(S, t+1) = 
Fc(X(S, t)). We have also argued that for this cause-effect relation to be characterizable as a 
behaviour, it should be associated with the presence of multiple potential update rules for the 
state of a system. We have also argued that only living systems exhibit multiple update rules 
[12]. Unfortunately, we have no a priori knowledge of Fc and, in many cases, we do not even 
have knowledge of the cause of an observed state change. Indeed, Fc and c itself must be 
inferred from observations. How is this inference process to be achieved? 
 
Imagine seeing two people presented with a litre of Coca-Cola: One drank it and the other 
didn’t. Would that be sufficient evidence to conclude that each person behaved so that if 
presented with a litre bottle of Coca-Cola one person always drank it and the other never? 
Additionally, how would we identify or infer the cause of the behaviour? What if the first 
person hadn’t drunk anything for two days but hated Coca-Cola versus loved it? What if the 
second person was thirsty but diabetic versus had just already consumed a litre of Pepsi-
Cola? There are many actions where the stimulus that caused it is not clear. Imagine seeing a 
man jog by you at 7am each day for a month. The hypothesis: “The man jogs at 7am every 
day”, which has “the man” as subject, S, along with an action, A – “jogging at 7am” - would 
certainly be taken by most as an example of a behaviour; a healthy one at that. However, 
there is no overt linking stimulus in that sentence. Rather, any potential stimuli are implicit, 
or covert. Without a specific hypothetical stimulus, we are left to posit that there may be 
many reasons (causes) as to why the man jogs at 7am each day. There may also have been 
many alternative activities (actions) for the man at that time too, not the least of which is the 
non-action, or inaction, such that the man did not jog by at 7am. In these cases, the notion of 
decision enters, as we assume that the man chose to jog by at 7am as opposed to other 
activities, all of which can be subsumed into the category “did not jog by at 7am”. 
 
Imagine, however, on the first day: if you saw the man jogging at 7am, would that be 
sufficient reason to call it a behaviour? We would argue no, because behind the notions of 
behaviour and conduct is the notion of correlation, or tendency, particularly in time, as in a 
random world there would be no notion of either. Implicit then in our idea of behaviour is the 
idea of a statistical ensemble, either explicit or implicit. The explicit version would be an 
ensemble of observations that allowed us to construct a frequentist model of how likely it 
would be that we saw the man jogging on a given day. In other words, we could count how 
many times we saw the man jogging at 7am, N(man seen jogging at 7am), and the total 
number of observations, N, to compute the probability of seeing the man jogging at 7am as 
P(man seen jogging at 7am) = N(man seen jogging at 7am)/N. What then is N? Again, there 
are many ensembles that could be chosen. One could naturally only look for the jogger each 
day at 7am. In that case, N would be N = N(man seen jogging at 7am) + N(man not seen 
jogging at 7am) and therefore P(man seen jogging at 7am) would simply be the fraction of 
days in which the man was seen jogging at that time. In this case our observations are 
restricted to the time – 7am. The question then is: how many days do we consider? For only 
one day, if we see the man jogging at 7am, then N(man seen jogging at 7am) = N = 1 and 
therefore P(man seen jogging at 7am) = 1. Just as in coin-flipping, however, seeing a heads 



from one flip of the coin is not a sufficient basis for concluding that P(heads) = 1. Rather, we 
need to test our observation with respect to a null hypothesis, as will be discussed below.  
 
The question of the choice of explicit ensemble is also intimately linked to the information 
that we use to specify an event in the first place. We could, for example, consider events 
whereby the man is seen jogging at some time, but the precise time is not an element in our 
specification of the event; or we could consider observations on the hour every hour. In the 
first case, the events of interest are seeing a man jogging at some time in the day, but with no 
interest in a particular time. Each day can then contain one and only one event. In the second 
case, however, there are 24 potential events where the man could have been seen jogging. 
Finally, we must acknowledge that an explicit ensemble may be constructed by different 
observers, including the subject themselves.  
 

a) Internal versus external ensembles 
 
In the above, we have taken a standard scientific approach to potentially characterising 
behaviours probabilistically, using the frequentist perspective of probabilities. However, we 
may ask: is that how humans or other organisms recognise and quantify behaviour? There is 
ample evidence to suggest that this is not the case, the existence of certain cognitive biases in 
the case of human decision-making being a case in point [1]. It is clear that Bayesian 
probability [13-19] is a much more adequate framework for understanding how organisms 
recognise and quantify behaviour, whereby a probability represents a belief or plausibility 
rather than an empirically determined frequency. Moreover, in particular, Bayes theorem 
offers a natural framework in which probabilities may be updated in the light of new 
information.   
 
In the case of the jogging man, if we think of this in Bayesian terms, we start with a prior 
probability, whereby having seen the man jogging by once we assign a probability, P(A), to 
whether we would see him jogging at 7am the next day, where now A represents the action – 
jogs by at 7am. However, after 30 days of seeing the man jog by at 7am, the posterior 
probability, P(A|X), where X is the information that on the previous 30 days the man jogged 
by at 7am, would be high, corresponding to the fact that we believed that the chance that we 
would see him jog by on day 31 would be much higher.  
 
Of course, the statistical ensembles with which we will characterise behaviours may also be 
implicit. For example, I do not have to observe 30 diabetics in order to assign a high 
probability to the fact that they will not drink a litre of Coca-Cola. I have an implicit 
statistical ensemble in my mental model of diabetics and Coca-Cola that maybe constructed 
partially from personal experience, but also is constructed from reading about the subject or 
learning about it from others. If, however, I noticed in multiple subsequent occasions 
diabetics drinking litres of Coca-Cola I might well revise my mental model. We can thus 
speak of internal ensembles, that are implicit in our mental models, and which are based on 
Bayesian plausibility, as distinct to external ensembles, whereby behaviours are 
characterised purely empirically via event counting in a frequentist perspective.  
 
In principle, with an appropriate external ensemble, we may characterize and quantify 
objectively a certain behaviour. However, with respect to an internal ensemble, the concept 
of behaviour becomes more subjective, whereupon the perceived plausibility of a given 
behaviour based on an internal ensemble could be very different from that which would be 



calculated from an objective external ensemble. Indeed, this difference is at the very heart of 
why we make so many decisions that have adverse effects. Of course, elements of the 
external ensemble can influence our internal ensemble and its associated probabilities and 
vice versa. That is, of course, how learning works, although this learning can be quite sub-
optimal. Indeed, this is precisely why behaviour change is so difficult, that evidence from 
external ensembles is not correctly incorporated into our internal models.   
 
The crucial point here is that behaviours can only be identified probabilistically. In terms of 
an external ensemble, we must therefore characterize behaviour and conduct via a set of 
observations of effects and their potential causes, with the set forming a statistical ensemble 
on which we will perform a process of statistical inference. Involved in this process are 
Actions, as effects, which are the result of decisions, D, where the concept of decision here is 
just another way of saying that there are multiple potential update rules, with the decision 
being identified with the choice of update rule used, given that there are several, even if it as 
simple as action/no action. Intuitively, from a cause-effect perspective, the statistical 
inference process is such that, for an ensemble of observations of a cause and its potential 
effects, when presented with similar circumstances, a person tends to make the same decision 
and perform the same action. In other words, we expect P(effect | potential cause present) > 
P(effect) or P(effect | potential cause present) > P(effect |potential cause absent). Of course, 
any such decision/action pair will have an outcome and that outcome may feedback through 
reinforcement learning into the conduct, to either reinforce it, in the case of a positive 
outcome, or change it, in the case of a negative one.  
 
 

b) A first pass at a statistical framework for Behaviour and Conduct 
 
Taking a purely phenomenological approach, as a first approximation to the characterization 
of behaviour and conduct probabilistically, we can characterize the relation between a 
stimulus/cause, X, and an action, A, to be characterizable as a behaviour if 𝐷! = (𝑃(𝐴|𝑋) 	−
	𝑃(𝐴)) 	> 	𝑈, where 𝑃(𝐴|𝑋) is the probability that the action is observed, given the stimulus 
X, and P(A) is the probability of observing the action independently of whether the stimulus 
is present or not, while U is some to be defined threshold. This captures the idea that a person 
is more likely to exhibit the action A in the presence of the stimulus X. Of course, we could 
also consider 𝐷" = (𝑃(𝐴|𝑋) 	− 	𝑃(𝐴|𝑋-)) 	> 	𝑈, where now, 𝑋- represents the absence of the 
stimulus. The two measures just use two different benchmarks for measuring the tendency 
associated with the behaviour: 𝐷! comparing the probability for observing the action given 
the stimulus, relative to seeing the action independently of whether the stimulus is present or 
not, while 𝐷" compares the probability of observing the action in the presence of the stimulus 
relative to the probability of observing it in its absence. In both these cases we may use either 
an external or internal ensemble to quantify the probabilities. 
 
The existence of a reference point with which to compare P(A|X), and thereby quantify it, is 
essential for the characterization of a behaviour. The probabilities 𝑃(𝐴|𝑋) can be thought of 
from a Bayesian perspective or a frequentist perspective, where, in the latter, if we have a 
defined external ensemble of observations, we may calculate 𝑃(𝐶|𝑋) = 𝑁(𝐶𝑋)/𝑁(𝑋), with 
𝑁(𝑋) being the number of times the stimulus is observed and 𝑁(𝐶𝑋) the number of times the 
action is observed “concurrently” with the stimulus. This notion of concurrence is subtle, and 
we will return to it.  
 



Given a statistical ensemble of observations we may consider the statistical significance of 
the difference between the observed probability of the stimulus-action and the corresponding 
benchmark – now a null hypothesis. We can do this with a statistical test, such as a binomial 
test [20]. In the case that the binomial distribution can be approximated by a normal 
distribution then |𝜀(𝐴|𝑋)| > 1.96 would correspond to the standard 95% confidence interval 
that the observed relation between the stimulus and action is not consistent with the null 
hypothesis. In these terms a reflex action, such as jerking your knee (A) when hit by a 
doctor’s hammer (X), would effectively have P(A|X) ~ 1. Similarly, addictions that link 
addictive stimuli and their corresponding actions would have high conditional probabilities, 
while strong aversions would have P(A|X) ~ 0. Operant conditioning would be such that 
P(A|X) changes in response to the reward from the action A, increasing/decreasing with 
positive/negative reinforcement [21].  
 
So, how would we apply this formalism to a person and their behaviour in the presence of a 
given food item, such as a sugary doughnut?  The first complication is deciding just what our 
external statistical ensemble should be. For example, for the action = person eats doughnut, 
imagine that we have a set of N observations, such that P(person eats doughnut | doughnut 
present) = 1. What is the appropriate null hypothesis? Naively we cannot consider P(person 
eats doughnut | doughnut absent) as this is a tautology. The person can’t eat a doughnut that 
isn’t there. We could, however, consider a larger ensemble, consisting of various persons 
where, for instance, we find that over that ensemble P(person eats doughnut | doughnut 
present) = 0.2. We can then compare the probability that a person in particular eats the 
doughnut versus the group.   
 
Of course, we do not need to construct a carefully controlled scientific experiment to count 
the number of times that a person has a certain “internally coordinated” response to an 
external doughnut stimulus and that that response is such that for a given person the 
probability that they eat the doughnut is significantly greater than that of the typical person. 
How so? Because we have an internally generated mental ensemble of person actions and 
doughnut stimuli. In this case, besides regarding P(A|X) as representing a statistical relation 
between A and X based on observation, it can also be considered to be a prediction model, 
where on observing the stimulus X we predict that the action A will be observed with 
probability/plausibility P(A|X). This will be an important point when we come to trying to 
understand the predictive drivers of those decisions that have adverse outcomes, as well as 
trying to understand the degree of plasticity of the driver.  
 
There are two important caveats to this simplified approach, however: one is that the outcome 
A will depend on many more factors than the pure presence of the stimulus X (would that the 
world were so simple!). Our action on being presented with a doughnut would be quite 
different in the circumstance that we had not eaten in two days versus we had already just 
consumed a full meal. Thus, in reality, we must consider the relation between an action and 
the complete set of state variables that could affect the relation between cause and effect. The 
second caveat is that, here, we are considering the action from a binary standpoint, i.e., that A 
occurs, or it doesn’t. However, if there are a range of possible actions, A1, A2,…, then P(Ai|X) 
tells us nothing about the individual probabilities P(Aj|X) and just refers to Ai or not Ai. 
 
What happens though in the case where the stimulus-cause is not recognised, or apparent, 
such as in the case of our jogger? In this case we have the probability of the action, P(jogs by 
at 7am). What then is our ensemble? There are different possibilities. One would be just the 
set of observations – man jogs by at 7am – yes or no? There is a subtle point though about 



how we generate our ensemble. The man jogs by between 6.55am and 7.05am considering all 
days? The man jogs by between 6.55am and 7.05am considering only weekdays (because 
that’s the only time you can make the observation)? The man jogs by between 7am and 7am 
and 3 seconds? Each one of these may lead to a different estimate according to how we 
characterise the notion of concurrence of events in space and time. We are not aware of the 
precise way in which we construct our mental model ensembles in situations such as this, but 
the fact remains that we do. As, indeed, to one degree or another, all organisms do.   
 
 

c) A second pass at a statistical framework for Behaviour and Conduct 
 
In the previous section we have argued that behaviour and conduct need to be understood 
probabilistically and that therefore we need to construct a statistical ensemble. We will now 
attempt to construct more formally such an ensemble by defining those elementary events or 
interactions that will compose it. In other words, behaviours/conducts will be composed of 
correlated sets of suitably defined elementary events.  
 
In fact, the appropriate elementary events are decisions, as we will argue below. However, 
we will first form an ensemble by defining as elementary events – interactions, I(S,O,A) – a 
combination of subject, S, action, A, and object, O, that represents an unique, discrete event 
in space and time. For the moment we will consider this to be an external ensemble. The 
subject will be that thing/person that carries out the action (or not), while the object will be 
that thing/person to which the action is directed. Note that actions do not always necessarily 
have an object per se, just as in language a sentence does not necessarily have an object. We 
will take the action to be that which is done, or not done, by a subject to an object, or which 
just changes the state of the subject or object. It is intimately linked to the concept of a verb 
in language, where the action corresponding to the verb can be considered as being planned, 
in process, or completed.  
 
Given the statistical nature of the characterization of behaviour, we may imagine the 
probability P(I(S,O,A)) that an interaction occurs. In this case, if S, O and A are the 
characteristics of that unique event, i.e., the definite article sense of S, O and A, then P cannot 
be interpreted in a frequentist sense, but must be interpreted in a Bayesian sense, i.e., it 
represents a belief or plausibility.  
 
The action (update rule) in the interaction is chosen from a set of possibilities, with the choice 
being a decision process, where we will take a decision, D, to be associated with a subject, S, 
planning, initiating or completing an action, A, chosen from a set of possible alternative 
actions (update rules), {A}, and where the action often acts upon an object, O. We 
distinguish the notion of interaction from that of a decision in that in the former we will not 
necessarily take into account the existence of multiple possible choices of action in a given 
situation. A key point here is that, although we may objectively observe the correlation 
between a subject, object and action, the decision-making process itself is associated with the 
subject and not necessarily open to observation. Indeed, the decision-making process is more 
often than not quite opaque, even to the decision makers themselves.  
 
Both actions and decisions can be intuitively characterised in the context of the 5 Ws: Who? 
What? Where? When? and Why? The Who? and What? are necessary for specifying the 
subject, object and action. The Where? and When? are necessary for understanding the 
spatio-temporal context of the decision/action, and the Why? is important for understanding 



the reasoning behind the decision/action. It is this latter point that will differentiate between 
behaviour and conduct. We may also add one “H” to the 5Ws, representing the “How” of the 
decision/action – what were the physical/chemical/neuropsychological/biological 
mechanisms by which the decision was made, and the action taken? 
 
4) A mathematical representation of decisions 
 

a) What then is a decision? 
 

As mentioned, moving beyond the idea of an interaction, where the concept of decision 
enters is that for a given subject and object there are multiple actions, {Ak}, that could occur. 
At the minimum, we may consider whether a particular action occurred versus if it did not 
occur, where, for the latter, there might have been many other actions that might have 
occurred.  
 

i) The space of possibilities for a decision 
 
How we partition the space of possible actions is a subtle point. If we partition it into “option 
A” or “not option A” then it is relatively unambiguous. However, if we consider the “man 
jogging by at 7am” example, how do we decide if or not, besides “jogged by at 7am” or 
“didn´t jog by at 7am”, we should include: jogged by while dancing, or singing, or crying etc. 
as possible actions? Of course, intuitively, these might have very low probabilities. However, 
the question of how to denote and enumerate alternatives is at the very heart of what a 
decision means. In the case of the real world, in any given situation, it is likely that a certain 
subset of actions stands out as being the relevant one. However, just the notion of: “I didn’t 
expect them to do that!” shows the subtleties of characterising the possibilities. The problem 
is even more acute in the virtual world of an internal ensemble, where the circumstances that 
would suppress the probabilities of many actions are not present. A further point is the 
feasibility of an action. The space of possibilities will be strongly affected by a host of 
restrictions – physical, economic and social, to name but three types.  
 

ii) Simple versus composite decisions and actions 
 
To try and understand the complexity of what we might think of as an elementary decision 
let’s consider the decision and associated action to “eat a taco”. Although this action sounds 
simple, it is anything but, as it involves a large number of more atomic decisions and actions 
- most being associated with motor actions. Firstly, to eat the taco one must put oneself in the 
physical vicinity of the taco (decision – approach; action – step) so as to be able to reach out 
with an arm (decision – pick up taco; action – reach out arm and grasp taco in hand) then 
bring the taco to the mouth (decision – eat taco; action – bring taco to mouth); one must then 
open the mouth, manoeuvre a part of the taco into the mouth, bite down and start chewing 
and then swallow – and that’s all just the first bite!  One then continues this procedure, 
potentially pausing between bites to chat, look at the scenery etc. The decision to take a 
second bite is a decision that is correlated to the first but does not follow a priori. Indeed, this 
is an example of a conduct – a series of correlated decisions and corresponding actions with 
an associated why. Furthermore, we may ask to what degree these decisions are under control 
from different parts of the brain.  
 
The key point here is that the decision and action “eat the taco” is really a compound action 
that involves a large number of other decisions and actions. In fact, the vast majority of 



familiar actions are really compound actions. Walking, talking, eating, playing football, 
watching television, listening etc. are all composed of a large number of other actions, many 
of which may even be involuntary. We are listening and seeing and acting continually, but 
without necessarily having complete voluntary control of our actions based on what we are 
seeing and hearing. In other words, conscious awareness of what we are seeing, or hearing, 
involves parts of the brain other than those involved with unconscious awareness. 
 
How can we then represent an action? How do we define the notion of an “atomic” action? 
As discussed above, eating a taco is actually a complex sequence of actions, where we 
showed how, at one level, it can be broken down into a sequence. However, just how many 
component actions can a given action be broken down into? Ultimately, this is a 
physiological question, that probably goes down even to the cellular level, where we could, at 
least in principle, break down the flows of chemical and electrical signals that are relevant to 
the decision and action process.   
 
 

b) Specifying the Who and What: States of the subject and object 
 
Of course, independently of how atomic the decision is, it will involve a potential change of 
state of the subject and/or object. Thus, to characterise an interaction or a decision, we must 
be able to state in precise terms who/what is the subject/object and what is the action. In that 
sense, we need a space of possibilities and a set of variables that can describe the state of the 
subject/object and what actions are possible. 
 
For the subject, we will take a set of state variables, {si(t)}, and for the object a set of state 
variables, {oj(t)}. There are a couple of tricky points here with respect to how we define the 
state of subject and object – what labels do we attach? The “eating the taco” example can 
help to fix intuition: 
 

• Chris will eat/eats/ate the taco de carnitas 
 

• The student will eat/eats/ate the taco de carnitas 
 

• The Facultad de Medicina student will eat/eats/ate the taco de carnitas 
 

• The Universidad Iberoamericana student will eat/eats/ate the taco de carnitas 
 
How we may describe the state of the subject depends on the information we have at hand. In 
principle, all four subjects are unique, as are the four objects. No two persons eating a taco 
are the same and no two tacos are the same – ever!  
 
 

i) Intrinsic versus Extrinsic state variables 
 
In describing the state of the subject, Chris, there will be internal/intrinsic state variables, 
{sIi(t)}, such as his age, his nationality, his BMI, was he hungry, is he a vegetarian, does he 
like carnitas, does he prefer carnitas to other available foods etc. There will also be 
external/extrinsic, {sEi(t)}, state variables that refer to the environment in which the action 
takes place – time of day, restaurant, family home, beach etc. Similarly, in describing the 
state of the object, taco de carnitas, there will be internal/intrinsic, {oIi(t)}, state variables, 



such as portion size, is it maciza, is it fresh etc. and, once again, external/extrinsic state 
variables, {oEi(t)}. In principle, the external variables for object and subject are the same, 
{sEi(t)} = {oEi(t)}, if we imagine we are partitioning the world into three non-overlapping 
elements – subject, object and environment (that which isn’t considered as subject or object). 
We will call these variables, environmental variables, {Ei(t)}. We will take the number of 
subject, object and environmental state variables to be NS, NO and NE respectively. Note that 
the extrinsic variables are very much aligned with the notion of a “niche”, as in an ecological 
niche. In this case it may be that an interaction is more or less favoured in the presence of a 
certain configuration of the extrinsic variables. For instance, one is more likely to eat a taco if 
it is served fresh in view, as opposed to finding it on the floor. It is the extrinsic variable part 
that plays an important role in representing, for example, an “obesogenic” environment. A 
principle feature of the extrinsic variables is that they represent the “where” and “when” 
contexts of where a decision is made, and an action taken.   
 
Note that the extraction of a set of objective environmental variables is not completely clear 
cut. As an example of when the environment state can be considered in the two different 
ways, consider the case of an interaction between a blind person and a deaf person, although 
we try to establish an objective set of environment descriptors, how it is perceived by subject 
and object is different to this objective set. Thus, if a blind person, as subject, is buying 
apples from someone else, the colour of the apples is not an environmental variable that can 
affect the state of the subject. 
 
 

ii) Objective versus subjective state variables 
 
When considering subject, object and environment variables it is important to distinguish 
between the objective values of those variables and the subjective values they are perceived 
to take by the subject or, potentially, the object. To explain: a taco de carnitas, as an object, 
has features that are objective and which can be measured accordingly, such as its size, its 
weight, its texture etc. However, it also has features that are subjective, such as it “looks 
delicious” or it “smells heavenly” or it “tastes good”.  These features can also include 
attitudes – “its disgusting” – for example, such as might be thought by a vegan. Thus, we 
must differentiate between objective variables associated with either the subject or the object 
or the environment, and subjective variables. The opinions of a meat-eating Mexican, a 
Mexican vegan and a Moslem will all be very different with respect to a taco de carnitas, 
although it is the same object for all.   
 
Also of relevance are differences in the objective and subjective intrinsic variables of the 
subject. For instance, obese subjects when confronted by a taco de carnitas may perceive 
themselves to be overweight and not obese, and this may play a role in altering the 
probability of eating it. Similarly, the probability of eating it for two subjects, each of which 
suffers from hypercholesterolemia or hyperuricemia, may be quite different if one 
understands fully their dietary origins and their health consequences while the other does not. 
 
 

iii) Specifying states and labels 
 
In representing the subject, object and environment we are confronted with the question of 
what variables will be considered relevant. Additionally - what variables are measurable?  



There are, of course, generic variables, such as age or gender, which are relevant to our 
decision-making processes. Nationality and ethnicity are two other generic ones. Socio-
economic status and educational level? Of course. Our weight/height/BMI? Our religious 
beliefs? Our health status? Our family history? Our personal history? Our genes? And these 
are just some of the variables that we would consider to be relatively static. There is, in 
principle, no limit to the number of variables that might be deemed relevant to our decision 
making. And what about an object, such as a humble taco? Its price, its size, its freshness? 
And the environment? Restaurant, street locale, at home, at a fiesta, at work, 
morning/afternoon/night? What about: am I hungry? Just how much do I like tacos? How far 
do I have to walk to buy one? How much money do I have? And, further – do I know much 
about the health effects of tacos? Do I know that meat production is very bad for the 
environment?  
 
We can think of the state variables as a set of labels that help us to understand interactions 
between subjects and objects, which in turn help us to understand the decision-making 
process and the subsequent actions taken. Thus, the label “hungry-not hungry” can help us to 
understand why a person ate something at a given moment in time. The label “vegetarian” 
can help us to understand why only a certain food type is eaten, while the composite label 
“hungry vegetarian” can help us to understand why a certain food type was eaten at a given 
moment in time. The meaning of these labels is enormously important. We also need to 
understand that a label is a summary that really represents a class of subjects or objects. Each 
subject or object is associated with a large number of labels, and each label in its turn 
represents a class of subjects or objects. In principle, with a sufficient number of labels, a 
subject/object can be defined uniquely as a set intersection of such labels, while a particular 
label will define a set union of those subjects/objects that possess that label or combination of 
labels. 
 
There are several important features to understand about these labels. First of all, there is the 
question of to what degree they are objectively definable. For example, to understand the 
label “vegetarian” – as someone who eats only vegetables versus someone who doesn’t eat 
meat – we also need to understand what a vegetable is and what meat is. In other words, to 
define the class we need to be able to define other classes that are implicit in the definition of 
the class of interest. Even more fluid, however, are labels where an objective definition is 
much more complex. For instance, with the label “hungry”, do we take that label as a self-
reported label? or as a label associated with a certain level of the hormone ghrelin? or a 
certain neuronal state etc.? What about happy, depressed, disappointed, tired, lazy etc.?  
 
Related to these questions, another important aspect of the state variables/labels is their 
degree of permanence. For instance, “male/female” as a state variable is, to a large extent a 
permanent label and that label can help us understand a wide set of interactions. On the other 
hand, labels such as “hungry/not hungry”, besides being subjective, are also quite transient. 
Moreover, within the state variables we must also account for what is in the mental model of 
the subject, and potentially the object, if the object is capable of having one. For example, 
memories of past events that are similar to the current situation can strongly affect our 
decision in the current situation.  
 
We will consider the intrinsic subject state to be a NS-dimensional vector, or we can also 
think of it as symbol string with NS elements (labels):  
 
S(t) = (sI1(t), sI2(t),…, sINS(t)) 



 
And the intrinsic object state to be a NO-dimensional vector or analogous symbol string: 
 
O(t) = (oI1(t), oI2(t),…, oINO(t)) 
 
and the environment to be a NE-dimensional vector or analogous symbol string: 
 
E(t) = (e1(t), e2(t),…, eNE(t)) 
 
These states will be composed of some variables that are objectively measurable, some that 
are subjective, some that are relatively permanent, some that are quite transient etc.  
 
In specifying the subject, object and environment, in the context of natural language we 
usually mean a specific, unique subject and a specific, unique object. What differs is what 
information is at hand to make the specification unique. In specifying: “Chris ate the taco de 
carnitas?” we must ask: Is this a generic Chris or a specific Chris? In language it is, more 
often than not, implicit that “Chris” is a unique subject and not a generic representative of the 
class of “Chris”. Similarly, with “the student ate the taco de carnitas” – implicitly there is the 
idea that although no further details about this student are to be had, it was a specific student, 
as is implicit in the use of the definite article “the”, as opposed to “a student ate the taco de 
carnitas”. Mathematically, we may account for this by asking to which class of subjects 
(CS)/objects (CO)/environments/(CE) does a specific subject/object/environment belong? The 
class of “me” is the singleton, as there is only one “me”. To understand the class of Chris’ – 
as in “a Chris ate the taco de carnitas” – requires further assumptions as to class membership. 
Similarly, with “the student ate the taco de carnitas” versus “a student ate the taco de 
carnitas”, in the latter case we must also make some assumptions about class membership. 
Thus, we must distinguish between information that is in principle obtainable – to 
differentiate “the student” from among many – versus that which is implicitly unobtainable, 
as in “a student”. Note that the amount of information we have about the subject or object 
can be a function of time and also of the population considered – students versus students of 
the UNAM etc.  
 
A final difficulty to point out is that we have no idea what constitutes a sufficiently complete 
set of state variables with which to describe a subject or object. In terms of decision making, 
the set of relevant labels for one decision and action can be quite different to those of another. 
We could posit the existence of a set of labels that cover all possible decisions or actions as 
opposed to the complete set that are relevant for a given decision/action. However, as there is 
no a priori way to specify a state adequately we can take a pragmatic approach: i) specify an 
initial set of measurable state variables; ii) determine the degree of predictability of those 
variables with respect to predicting a given decision/action; iii) add or subtract a variable to 
this set; iv) determine the degree of predictability of the new variable set with respect to 
predicting the given decision/action. If the predictability is enhanced on adding the variable, 
then we conclude that it is a relevant state variable for that decision/action, while if the 
predictability is not changed then we deem it to be irrelevant. Similarly, if the removed 
variable does/does not change the degree of predictability then we consider it to be 
relevant/irrelevant. 
 
 

iv) Counting states 
 



An important concept will be that of counting states. To count states, we need a statistical 
ensemble, as discussed above in the context of behaviour. In the case of human decision 
making there are several ensembles of interest. For instance, an ensemble of people at a 
moment in time or an ensemble of people, or a person, over time. Once we specify a state 
with a certain set of variables, and a measuring apparatus for each state variable, then we may 
determine how often that state occurs within our ensemble. For instance, if our ensemble is 
students of the UNAM, we may ask at a given moment how many report - feeling very 
hungry, quite hungry, neither hungry nor satiated, quite satiated, very satiated. We can then 
count how many students, nsh, were in a hunger state, h. If there are N students, then (N – nsh) 
were not in that hunger state. Similarly, we can take one student over a period of time and see 
when they reported the same, counting how many times they reported a hunger state over a 
given time interval. In both cases, however, we must realise that we arrive at counts on states 
that are > 1 only because a subject or object state is being approximated. We can call this 
approximation – coarse graining – and it corresponds to ignoring or being unaware of 
information that could distinguish between two states. 
 
 

v) Interactions 
 

We have previously defined an interaction as a unique event I(S,O,A). Now we can specify 
the subject and object states via S = S({sIi(t)}, {ei(t)}) and O = O({oIi(t)}, {ei(t)}). From this 
perspective an interaction is intimately linked to a specific subset of labels that defines the 
subject, object or environmental states. Thus, the labels “food consumer” and “food 
consumed” indicate the nature of the interaction, though the most appropriate labels might be 
“hungry student” and “taco de carnitas”.     
 
For the probability P(I(S,O,A)) that an interaction occurs, if S, O and E are the characteristics 
of that unique event, i.e., the definite article sense of S, O and E, then, clearly, P cannot be 
interpreted in a frequentist sense but must be interpreted in a Bayesian sense, i.e., it 
represents a plausibility or belief. However, if we consider the indefinite article sense of S, O 
and E then we may state: “a student ate a taco”. Here, we may consider a population of 
students and a population of tacos, but the reference is with respect to a single event between 
a member of the subject class of students and a member of the object class of tacos. As with 
the concept of coarse graining states we can also coarse grain interactions and count them 
over an ensemble. For example, considering “some students ate some tacos” – if we coarse 
grain the subject state – ignoring differentiators between the students – and coarse grain the 
object state – ignoring differentiators between the tacos – then we may count how many 
“student eating a taco” interactions there were.  
 
 

vi) Real versus virtual interactions 
 

An important element here is whether the interaction is real or virtual. Real here means that 
there is a physical action and a physical object in a real, physical environment, all of which 
are observable. These interactions form part of an external ensemble, as discussed in Section 
2d, while virtual refers to the fact that the interaction occurs as a mental construct, these 
interactions forming part of an internal ensemble. Thus, for example, we may imagine 
another person, as subject, eating a taco, as object, in a particular environment. In this case, 
we can still potentially assign subject, object and environmental states.  
 



S(t) = (sI1(t), sI2(t),…, sINS(t)) 
 
O(t) = (oI1(t), oI2(t),…, oINO(t)) 
 
E(t) = (e1(t), e2(t),…, eNE(t)) 
 
As mentioned, the relevant features of a real subject, real object and real environment may 
be divided up into objective and subjective features. In other words, how a subject is 
perceived, or perceives themselves, or an object or environment can be quite different to 
reality. In the case of attitudes, it is not necessarily the case that a distinction can be made 
between reality and perception of reality. For a vegan, a taco de carnitas may appear 
“disgusting” even though it has been considered “appetizing” by thousands of non-vegans. 
However, people may also consider themselves to be normal weight when they are very 
overweight when referred to an objective scale, such as BMI. In the case of virtual 
interactions though, there is no objective anchor that can be held up as a baseline. In a virtual 
interaction the labels that we apply to a subject, which may be ourselves, an object and the 
environment, are what our mental model deems them to be.  
 
 

c) Just how likely is a state, decision or action?  
 
Up to now we have been setting the stage – defining interactions, decisions and actions, 
trying to show how to formalize these notions using the concept of specifying a subject, 
object and environmental state and a corresponding interaction and decision associated with a 
change of state. However, if we go to the level of every state and every action as being 
unique, then how may we do science? For instance, how can we understand why a certain 
decision is made or a certain action taken if every single one is unique? How can we ask how 
likely is it that a certain decision is taken, or action performed? How do we characterize 
behaviour? 
 
We have emphasized that we can consider objective or subjective external ensembles as well 
as internal ensembles. In certain circumstances, as discussed, for an external ensemble we 
may consider a frequentist approach to probability. Generally, however, a Bayesian 
perspective is necessary. As an example, going back to statements such as: “Chris ate the taco 
de carnitas” or “the student ate the taco de carnitas”, in this setting, there is no concept of 
how likely it is for Chris versus the student to eat the taco – if we consider “likely” to come 
from a frequentist interpretation of “likely = probable”, where we would need a statistical 
ensemble (a population of events) to say how probable.  
 
However, we may imagine constructing an external ensemble of interactions by collecting 
appropriate data. For example, watching Chris in his eating habits over time, or considering a 
group of students. What we must realize however, is that Chris at one moment in time is not 
the same as at another moment. Neither is one student the same as another. This means that, 
when we construct an ensemble, we are going to make an approximation as to the state of 
both the subject and object. However, this ensemble may be a real ensemble or a virtual one. 
For instance, if we consider the prior probability to eat the taco de carnitas, P(eat the taco de 
carnitas), how would this probability be computed. The unbiased decision would be to assign 
P(eat the taco de carnitas) = 0.5. However, if we asked a family member what they would 
estimate the probability of P(Chris eats the taco de carnitas) they would not flip a coin. They 
would likely say “high”, if they know that Chris likes carnitas, and “low” if he doesn’t. How 



do they do this? They have a virtual ensemble of Chris/taco events in their mental models, 
which allows them to assign a probability to the event. Whether this probability extracted 
from a virtual world is an accurate representation of what Chris will do next in the real world 
is, of course, a matter of experiment.  
 
Thus, we can have two models for Chris and tacos – one that is the belief of the family 
member and one that is associated with a set of empirical observations of under what 
circumstances, subject, object and environmental variables, Chris eats the taco. Again, if we 
make a detailed specification of these states then it is impossible to create an ensemble of 
such events. To create an ensemble, we either have to coarse grain the 
subject/object/environmental variables or to consider a wider group that shares labels with 
Chris and try to infer what Chris would do from an extrapolation of different facets of the 
group behaviour. In other words, we could consider a population of people, some of whom 
share the label “man” with Chris, some of whom share the label “English”, some who share 
the label “age 55-65”, some who share the label…, etc. This inference can be done using 
multiple statistical or machine learning models. It does require however, that we have a real 
ensemble of persons. We can also, of course, compute probabilities in frequentist terms 
directly if we stick to just a small number of labels in the population. Thus, to determine how 
many students ate taco de carnitas today among a population of students is possible.  
 
We can also relate subjective and objective probabilities by asking, for example, how likely 
are you to take action A and then use empirical data to determine the corresponding objective 
probability, at either the individual level, if we have such data, or at the group level by 
determining the characteristics of those in the group that did/didn’t take action A given that 
they said they would/wouldn’t. 
 
 

i) Predictability  
 
Thus, taking a decision to be a choice between alternative actions, including no action, we 
can consider  
 
P(I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}), Ak))     (1) 
 
which represents the probability for a subject S in the state S(t) = {sIi(t)} to take the action Ak 
given an object in a state O(t) = {oIi(t)} and an environment in a state E(t) = {ei(t)}. Here, we 
are still allowing for the fact that the environment state may be different for the subject and 
object. In the case where the environmental variables are common, or we wish to represent 
the environment objectively, independently of the subject and object states, then we may 
separate them out and write  
 
P(I(S({sIi(t)}), O({oIi(t)}), E{ei(t)}), Ak))      (2) 
 
As an example of when the environment state can be considered in the two different ways, 
consider the case of an interaction between a blind person and a deaf person, although we try 
to establish an objective set of environment descriptors, how it is perceived by subject and 
object is different to this objective set.  
 
If we take the example of Ak as an action (k = 1)/no action (k = 0) choice, then  
 



P(I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}), A1)) = 1 - P(I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}), 
A0)) 
 
P(I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}), A1)) is a function on an NA = NS + NO + NE 
dimensional space. Equation (1) can also be viewed as a prediction model, in that if S, O and 
E are such that P(S, O, E, Ak) ~ 1 then we may say that, if we see the subject, object and 
environment in these states, it is very likely that a decision is made to carry out the action Ak. 
In other words, these state variable configurations are predictive of the action. Similarly, if 
P(S, O, E, Ak) ~ 0 it is very unlikely that the action Ak is carried out and the corresponding 
state variable configurations predict that the action will not be carried out. If P(S, O, E, Ak) ~ 
P(Ak)  then the corresponding state variable configurations are not predictive.  
 
We can generalize Equation (1) to the space of all actions as 
 
P(I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}), A))     (3) 
 
where A = (A1, A2,…,Ak,…, ANA) is a vector representing the NA considered actions, 
including the base possibility of “no action”. Considering (1) and (2) as joint probability 
distributions, then Equation (3) represents a set of NA numbers such that  
 
∑ P(I(𝐒({𝑠#$(t)}, {𝑒$(t)}), 𝐎({𝑜#$(t)}, {e$(t)}), 𝐴%))
&!
%'!  = 1   (4) 

 
i.e., the subject and object have to do “something”, even if that something is nothing. This is 
to account for the fact that the decision process must lead to a result. As we have emphasized, 
how to interpret Equations (1), (2) and (3) depends on how we interpret the concept of 
probability and the associated notion of statistical ensemble. However, whether we interpret 
it in a strict Bayesian belief sense or not, as emphasized, there always has to be some notion 
of an ensemble, be it an objective one or a virtual one. In this case, the subject, object and 
environmental variables, S, O, and E are all associated with perceptions rather than objective 
reality. Now, Equation (3) becomes 
 
P(I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}), A))     (5) 
 
Although it is not at all clear that in the virtual world Equation (4) holds. From Equation (1) 
we can also consider the conditional probability  
 
P(Ak | I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)})))     (6) 
 
which represents the probability that the action Ak is taken conditioned on the subject, object 
and environment states as implicit in the interaction I. 
 

 
5) The Decision Landscape 
 
Equation (6) can naturally be interpreted in a geometrical sense, where it defines for us a 
Decision Landscape, which tells us under any circumstance how likely it is that the action is 
taken or not, or which action in the case of alternatives, as a function of the state variables. In 
this case, P(Ak | I(S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}))) represents a height function on a NA 
= NS + NO + NE dimensional base space of the subject, object and environment variables. If 



these variables are in such a state that P(S, O, A1) > 0.5, then it is more likely that the action 
is taken rather than not. For states where P(S, O, A1) ~ 1, then it is very likely that the action 
is taken, while if P(S, O, A1) ~ 0 it is very unlikely that the action is taken.  
 
Equation (6) also represents the output of a prediction model, such that it predicts how likely 
is the action, given the state of the subject, object and environment. Note that we are here 
thinking of an individual decision/action. However, as stated above, this requires a notion of 
potentially unraveling the full causal sequence of atomic decisions and actions that compose 
what we typically think of as an action – such as eating. For instance, the decision of “don’t 
eat the taco” can enter at any point in the process from the first physical approach to the taco 
up to the point at which the first bite is swallowed. Alternatively, only part of the taco may be 
eaten. 
 
However, putting these complications aside, how might we consider Equation (6) in the 
empirical domain? i.e., how can we measure it? Let’s go back to the examples of: “Chris ate 
the taco de carnitas”. If the subject and/or object and/or environment are unique, then really, 
we can go no further with Equation (6), other than in a Bayesian sense of assigning a 
subjective belief. The problem with this, as in the example of a friend saying that you are 
likely to eat the taco de carnitas, is that, even though the friend knows you well and from 
their virtual ensemble can estimate that its highly likely that you will eat the taco, they cannot 
say why in any really useful sense. This is because all they can give us is the output of 
equation (6) taking into account only the base information “Chris” and “taco de carnitas”. 
They would not be able to disaggregate the probability to be able to determine what particular 
factors played an important role and which not. Indeed, this is even the case when trying to 
understand Equation (6) as the subject. We are not aware of the relative weights of the factors 
that enter into our decision other than we make an attempt to self-report them.     
 
Using either an external or an internal ensemble for Equation (6) we can consider it from a 
“landscape” point of view, similar to the concept of a fitness landscape in evolutionary 
biology [22]. However, given that the relation between the action and the state variables is 
not static, a more appropriate analogy is that of an “effective fitness” landscape [23, 24] 
wherein the height of a particular point in the base space can change over time. This, indeed, 
is a way to visualize behaviour change, where a particular point in the space can change its 
height so that before the behaviour change, for a particular adverse action Ak, P(Ak) > 0.5, 
while after the behaviour change it is P(Ak) < 0.5, signifying that the behaviour change has 
reduced the probability of the adverse decision and action. 
 
In Figure 1 we illustrate a simple decision/action landscape for a decision/action associated 
with the consumption of junk food as a function of two subject state variables – educational 
level, X1, and degree of cognitive stress, X2. The base plane is associated with P(Ak), i.e., the 
probability to consume junk food independently of a specific configuration of the state 
variables. The decision/action threshold is such that for those values of the state variables 
where P(consume junk food | X1 X2) > 0.5 there is more likelihood that the subject consumes 
the junk food in that state than otherwise. 
 
A real Decision landscape involves hundreds if not thousands of state variables in which case 
the visualization is more problematic. As with fitness landscapes however, we believe that a 
lower dimensional visualization is useful. The interpretation of this landscape in terms of 
reduction of junk food consumption is to increase educational levels while maintaining 
moderate levels of cognitive stress.  



 
 
 
 
 
  
  
 
 

a) When is a Decision a Bad one versus a Good one? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Simple illustration of a Decision/action landscape. 
 
 
 
The meaning and interpretation of the landscape also depends on the particular ensemble 
used to calculate it. For instance, we could have used an external ensemble of persons of 
differing educational levels where their level of cognitive stress was evaluated. The 
consumption of junk food could have been objectively observed or self-reported. Similarly, 
the degree of cognitive stress may have been measured objectively or may also be self-
reported. In principle, we could also have considered an ensemble over time for a given 
person. The probabilities could also have been estimated as Bayesian beliefs, either by an 
external observer or by a particular subject. We could also compare and contrast the decision 
landscapes associated with different ensembles. An interesting example there is that the 
height function is objective, measured using a suitable external ensemble, whereas one or 
more of the state variables is an internal variable of the subjects considered. For example, it 
has been found that the self-perception of Body Mass Index (BMI) can be distorted relative to 
true BMI and this can lead to behaviours, such as “not dieting”, that would have had a higher 
probability to be implemented if the self-perception of BMI was aligned with real BMI [25].    
 
 

a. When is a decision a bad one versus a good one? 
 
Up to now we have made no reference to the concept of whether or not a decision was 
“good” or “bad”, which, in its turn, is intimately related to the question of why we make a 
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certain decision or perform a certain action. The evaluation of good or bad is related to the 
outcome of the decision/action with respect to one or more metrics of good/bad. The 
traditional view of rational decision making is that the decision is made so as to choose the 
alternative that maximizes the expected utility [26]. Besides the normal critiques around 
bounded rationality etc. we can also wonder to what extent this captures the right idea in the 
first place. Most work on expected utility has been associated with “gambling” situations 
where there is one clear payoff function – money earned. Extensions can include risk but 
within the context of a unique utility function that has one input. However, in the vast 
majority of situations there are multiple “utility” functions that are relevant.  
 
Let’s take a simple example that is relevant for weight gain: deciding to take the stairs versus 
the elevator to get to your office. What are some “utilities” that could enter there?  DT = the 
time difference between taking the stairs and taking the elevator; DE = the difference in 
physical energy expended in one route versus another; DH = the relative perceived health 
benefit of one versus the other (think how this can change pre-COVID versus post-COVID!); 
DS = the socialization benefit in the case you would take one versus the other with 
coworkers. There are others. Of course, one could invent a single unique utility function that 
balanced tradeoffs between these outcomes. However, the relative value of one versus the 
other is also a function of subject, object and environment states. For example, if one is in a 
tired or lazy state (subject effect) then the elevator will be more likely than if not. If the 
elevator is particularly small, or if the staircase is particularly steep (object effect), this may 
affect the decision. If there is information posted next to both (environmental effect) 
delineating the health benefits of one versus another then that also may affect the decision.    
 
To formalize this: we consider Nv value functions: V = (v1, v2, …, vNv), and a corresponding 
change, DV, in these value functions given a certain action Ak – DV(Ak) = (Dv1(Ak), 
Dv2(Ak), …, DvNv(Ak)). So, every action can lead to a change in these values functions. Note 
that DV(Ak) can take different values depending on where the measurement is made – pre-
action versus post-action. Post-action, DV(Ak) represents the real or perceived payoffs of the 
action, i.e., they are outcomes. In general, these will be subjective evaluations, although in 
some cases the perceived change in value may be compared to a real one. For example, the 
perceived time taken via one alternative versus another can be compared with the real time 
taken. In the case of a pre-action evaluation <Dv1(Ak)> represents the predicted value change 
due to the action. Here, <…> does not necessarily mean that it is an expected value 
calculated as a weighted sum over a probability distribution of outcomes, although from an 
external ensemble perspective it could, in principle, be calculated as such; rather, it means 
that we have an internal prediction model for estimating what the change in value will be.   
 
We then posit that the probability to take the action Ak is 
 
P(Ak | <DV(Ak)>) = P(Ak | <Dv1(Ak)>, <Dv2(Ak)>,…, <DvNv(Ak)>)   (7) 
 
Thus, the probability to take the action Ak is conditioned on the predicted payoffs from the 
action along a set of distinct value functions.  
 
We now have a formalization of our notion of a good versus bad decision: a decision is 
“good” versus “bad” with respect to a given value function vi if Dvi(Ak) > 0 (“good” 
decision) versus Dvi(Ak) < 0 (“bad” decision). Of course, the question then is to what degree 
is our decision making “frustrated”? What I mean by this is that it is not possible to perform 
an action such that Dvi(Ak) > 0 for all vi. This would be the case, for example, in the stairs-



elevator situation if the elevator was slow. In other words, DT(stairs versus elevator) > 0 but 
DE(stairs versus elevator) < 0. In this situation “you can’t have your cake and eat it”.  
 
       

b) Predicting value 
 
If we posit that a decision is made, and an action taken, according to the predicted changes in 
a set of value functions then we must then ask – how are those predictions made? 
 
Here we will assume that there is a prediction model for each value function change. Thus 
 
P(Dvi(Ak) | S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)})     (8) 
 
In other words, we predict what the probability is for a change in the value function vi given 
the subject, object and environment states. Thus, for example, in the stairs-elevator example – 
if the subject is in a “very tired” state, then the probability for a large perceived increase in 
effort, DE, to take the stairs would be higher than in the “non-tired” state with the 
consequence that in equation (6) the probability function will be such that P(take the stairs | 
<DE(take the stairs)>1) < P(take the stairs | <DE(take the stairs)>0), where <DE(take the 
stairs)>1 is the predicted effort for taking the stairs given that the subject is in the state 1 = 
“very tired” and <DE(take the stairs)>0 is the predicted effort for taking the stairs given that 
the subject is in the state 0 = “not tired”. The predicted change in vi we then take to be 
 
<Dvi(Ak)> = F(P(Dvi(Ak) | S({sIi(t)}, {ei(t)}), O({oIi(t)}, {ei(t)}))   (9)  
 
for a given function F(  ) that maps the probability function for the value function changes 
conditioned on the subject, object and environment states into an “expected” change where, 
again, we emphasize that this does not mean that <Dvi(Ak)> is calculated as a weighted sum 
of probabilities. 
 
We may ask what the difference is between Equations (6) and (7), given that they both 
represent the probability for a given action. The difference is that in Equation (7) we are 
trying to account for the “why” a particular decision is made. Equation (6) is taking a more 
empirical approach in that, at least in principle, it is trying to relate some observable state 
variables to actions taken, whereas Equation (7) accounts for the fact that the reason a 
decision is made is due to the impact that it has on the predicted changes in the value 
functions that are relevant to the decision maker. Equation (8) then relates the predicted 
change in a given value function to the subject, object and environment states. In this way (7) 
and (8) together are equivalent to (6). The difficulty with Equations (7) and (8) is that the 
value functions as intermediaries in our mental models are not directly observable.   
 
6) The Conductome 
 
Our Decision Landscape effectively represents what we might terms a “decision-ome”, as 
knowing the probability given in Equation (6) as a function of the different subject, object 
and environment states allows us to map out the likelihood of a decision and action for any 
state configuration. In this sense, the subject, object and environment variables/labels, in 



analogy with the genome and other omes, represent the universe of variables that are relevant 
for understanding that decision/action.  
 
If we consider the notion of conduct to mean that under the same or similar conditions the 
same decision/action is taken, then the Conductome is the same thing as the decision-ome. 
The concept of conduct as mentioned at the beginning enters when a set of correlated 
decisions are considered and we seek to understand the “why” behind the observed or 
inferred behaviour. 
 

a) An example  
 
In order to show that the above discussion is not purely hypothetical, we will here construct a 
specific example of a Conductome. The data we will use is that of Project 42, an 
interdisciplinary project researching the origins and risk factors for obesity and metabolic 
disease that is constructing a “deep” dataset that contains thousands of variables – genetic, 
physiological, sociological, psychological, anthropometric, epidemiological and behavioral – 
associated with more than 3000 university workers, students and academics at the 
Universidad Nacional Autónoma de México. The specific example of a behaviour that we 
will consider is that of sedentariness, as proxied by the answer to the question: 
 

“Do you exercise midweek?” 
 
A motivation for this question is obviously to link the answer as a potential risk factor to the 
prevalence of obesity and metabolic disease. However, the main drawback of this is that, to a 
large degree, we already know the answer: obesity is strongly correlated with 
overconsumption of food and sedentariness. In other words, obesity as a health status is 
known to be related to sedentariness as a behaviour. The important question then is not so 
much the link between obesity and sedentariness but, rather, the various factors that lead to 
sedentariness as a risky behaviour and, furthermore, the question of whether or not that 
behaviour can be changed and, if so, how?  
 
In the language of the Conductome, we take C as the class represented by those who 
answered No to the question “Do you exercise midweek?” Of course, we do not take this to 
be a complete representation of the concept of sedentariness, which can be associated with 
many different facets. We wish to construct the Conductome, P(C|X), for this conduct. We 
will restrict attention here to a set of variables as predictors associated with a questionnaire 
applied to 292 participants in 2019. The total number of data elements, i.e., the sum of the 
potential question responses over all questions asked, was 1713. Thus, in effect, X is a 1713-
dimensional vector, where each dimension has a binary yes/no response. As an example, one 
question is: “What housework/chores do you do?” with responses: childcare, cleaning the 
bathroom, dusting, sweeping, cleaning the floor, making the bed, cooking, washing dishes, 
washing clothes or going to the supermarket. Each potential response is associated with a 
yes/no, which then represents 10 of the 1713 total responses. 
 
We consider first the univariate relations P(C | Xi) for a particular Conductome variable Xi. In 
order to test for statistical significance, we use the binomial test 𝜀(𝐶|𝑋$) of section 3b to 
determine if the presence of the conditioning factor is inconsistent with the null hypothesis 
that the probability for the conduct C is P(C ). The full Conductome probability distribution 
P(C | X) can be constructed using different techniques. A very useful one is to use Bayes 
theorem and then the Naïve Bayes approximation [27]. Explicitly,  



 
P(C | X) = P(X | C)P(C )/P(X) 

 
with the likelihood function P(X | C) approximated as  
 

𝑃(𝑿|𝐶) = 	D𝑃(𝑋$|𝐶)
&

$'!

 

 
A simplification can be made can be obtained by considering 
 

𝑆(𝐶|𝑿) = ln	(
𝑃(𝐶|𝑿)
𝑃(𝐶̅|𝑿)

) =I𝑠$ + ln	(𝑃(𝐶)/𝑃(�̅�)
&

$'!

 

where 𝑠$ = ln(()𝑋$ *𝐶+
,-𝑋$.𝐶̅/

) with 𝐶̅ being the complement of the set C, i.e., those participants who 

do exercise midweek. If the set of Conductome predictors X is such that 𝑆(𝐶|𝑿)	> 0 then 
those predictors indicate enhanced risk of sedentariness, in that the person is more likely than 
not to not exercise midweek. If 𝑆(𝐶|𝑿)	< 0, however, the contrary is the case. si is effectively 
the relative weight of the risk/protective factor i. In this case the Conductome is a sum of 
contributions from each variable.  

In Table 1 below we see the most statistically significant predictors for the conduct under 
consideration. The table shows that of the 292 participants, 120 did no exercise midweek, 
corresponding to 41% of the participants. The first line represents the most statistically 
significant predictor – childcare during the week – where the number of participants who are 
involved in such childcare is 41, of whom 29 do not exercise midweek, corresponding to 
70.7%. The statistical reliability factor 3.86 is the number of standard deviations of the 
binomial distribution that 70.7% is not consistent with the null hypothesis of 41%. The 
predictive model weight is just si in the above Naïve Bayes approximation. In the final 
column we have attempted to hypothesize what the causal relationship between C and Xi may 
be. Thus, it is intuitively reasonable to imagine that looking after children can have a 
significant impact on the possibility of doing exercise. A particular characteristic of these 
results is how different behaviours/conducts can be related, with particular types of 
housework/homecare being particularly significant, as well as eating habits, with eating in the 
street being highly linked to not doing exercise (88.9%). We can also see that extensive travel 
time (60min) in public transport is a significant factor. This factor, along with others, reflects 
environmental factors in which decision making must be carried out. All in all, these factors 
strongly reflect the difficulty of exercising when the time is filled with other activities – 
housework, transport etc.     

 
In the same way we may determine what the principal factors are in being non-sedentary 
midweek. In Table 2 we show those most statistically significant factors that are negatively 
correlated with sedentariness. Of special interest here is the presence of educational level 
(doctoral level) as a significant predictor, as well as occupation (researcher), with only 8.3% 
of researchers not exercising midweek and 19.2% of doctoral level participants. Transport in 
the participant’s own vehicle and shorter travel times (30min) are also seen as significant 
factors. Also significant is the reporting of free time by the participants.   



 
 

Table 1: Principle Conductome risk factors for Conduct = No exercise midweek  
 
We can also put these Conductome results into the format of a Decision/Conduct Landscape 
as is seen in Figures 2 and 3 for two Conductome factors – what household work is done by 
the subjects and their occupation respectively. In Figure 2 we see that the principal household 
work that is a risk factor for the conduct = no exercise midweek is looking after children, 
while in Figure 3 we see very large differences for different occupations, with less than 10% 
of researchers not exercising midweek versus 75% for vigilantes. 
 
 
 

Pregunta Valor Respuesta 

Número 
de 
personas 
con X 

Número de 
personas que 
no hacen 
ejercicio y X 

% que 
no 
hacen 
ejercicio 

% que no 
hacen 
ejercicio y 
X 

Predictive 
model 
weight 
(score) 

Statistical 
reliability 
(Epsilon) 

¿En qué tipo de vehículo se transporta de su 
casa al trabajo? y ¿Cuánto dura cada uno 
aproximadamente EN MINUTOS?: Auto 
propio Y Sí 164 55 41.10% 33.54% -0.3 -1.97 
Cintura (8.199, 76.28]   30 7 41.10% 23.33% -0.52 -1.98 
¿Aproximadamente cuantas horas libres 
tiene al día entre semana?: Tarde (En Horas) Y Sí 111 35 41.10% 31.53% -0.34 -2.05 
¿Aproximadamente cuantas horas libres 
tiene al día en fin de semana?: Noche (En 
Horas): Valor 2   40 10 41.10% 25.00% -0.48 -2.07 

¿Dónde realiza la mayoría de su ejercicio? A2 Calle 18 3 41.10% 16.67% -0.7 -2.11 

Pregunta Respuesta 

Número 
de 
personas 
con X 

Número de 
personas que 
no hacen 
ejercicio y X N Nc 

% que no 
hacen 
ejercicio 

% que no 
hacen 
ejercicio y 
X 

Predictive 
model 
weight 
(score) 

Statistical 
reliability 
(Epsilon) 

Causa o 
consecuencia 

¿Qué quehaceres realiza?: 
Cuidado de niños Sí 41 29 292 120 41.10% 70.73% 0.38 3.86 Causa 
¿Qué tan regular es su horario 
para ir a dormir? 1 - 2 hrs 17 14 292 120 41.10% 82.35% 0.67 3.46 Ambos 
¿Realiza ejercicio en fin de 
semana? No 182 97 292 120 41.10% 53.30% 0.06 3.35 Ambos 
¿A qué hora se transporta a su 
casa? 15:00 32 22 292 120 41.10% 68.75% 0.34 3.18 Causa 
¿Cuántas horas duerme entre 
semana? 4-5 horas 65 39 292 120 41.10% 60.00% 0.18 3.1 Consecuencia 
¿Aproximadamente cuantas 
horas libres tiene al día entre 
semana?: No sé Sí 24 17 292 120 41.10% 70.83% 0.39 2.96 Causa 
¿Dónde come entre semana?: 
Posición 2 

En puestos 
de la calle 9 8 292 120 41.10% 88.89% 0.9 2.91 Ambos 

¿Qué quehaceres realiza?: 
Lavar el baño Sí 172 89 292 120 41.10% 51.74% 0.03 2.84 Causa 
¿Qué quehaceres realiza?: 
Sacudir Sí 158 82 292 120 41.10% 51.90% 0.03 2.76 Causa 

¿En qué tipo de vehículo se 
transporta de su casa al 
trabajo? y ¿Cuánto dura cada 
uno aproximadamente EN 
MINUTOS?: Metro: Valor 60 min 11 9 292 120 41.10% 81.82% 0.65 2.75 Causa 
¿Cómo consigue sus 
colaciones?: La compro en un 
puesto Sí 50 30 292 120 41.10% 60.00% 0.18 2.72 Ambos 
¿Qué quehaceres realiza el fin 
de semana?: Cuidado de niños Sí 60 35 292 120 41.10% 58.33% 0.15 2.71 Causa 
¿Dónde desayuna? Seleccione 
por orden de frecuencia.: 
Posición 1 

En la 
cocina del 
trabajo 27 18 292 120 41.10% 66.67% 0.3 2.7 Ambos 



¿Cómo considera que es su comida? A4 Ligero 25 5 41.10% 20.00% -0.6 -2.14 
¿Cómo realiza su jornada laboral? y ¿Cuánto 
tiempo (en HORAS) aproximadamente? En 
movimiento: Valor 6   16 2 41.10% 12.50% -0.85 -2.32 
¿Aproximadamente cuantas horas libres 
tiene al día entre semana?: Mañana (En 
Horas): Valor 1   16 2 41.10% 12.50% -0.85 -2.32 
¿Aproximadamente cuantas horas libres 
tiene al día entre semana?: Tarde (En 
Horas): Valor 2   30 6 41.10% 20.00% -0.6 -2.35 
¿Aproximadamente cuantas horas libres 
tiene al día entre semana?: Mañana (En 
Horas) Y Sí 40 8 41.10% 20.00% -0.6 -2.71 

¿En qué tipo de vehículo se transporta de su 
casa al trabajo? y ¿Cuánto dura cada uno 
aproximadamente EN MINUTOS?: Auto 
propio: Valor 30   27 4 41.10% 14.81% -0.76 -2.78 

Grado de estudios Doctorado   47 9 41.10% 19.15% -0.63 -3.06 
Puesto  Investigador   24 2 41.10% 8.33% -1.04 -3.26 

¿Realiza ejercicio en fin de semana? Y Sí 107 23 41.10% 21.50% -0.56 -4.12 

 
Table 2: Principle Conductome factors for Conduct = Exercise midweek 

 
 
 

 
 

Figure 2: One-dimensional Decision/Conductome landscape for Conduct = No exercise 
midweek and risk factor = type of household work 
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Figure 3: One-dimensional Decision/Conductome landscape for Conduct = No exercise 
midweek and risk factor = occupation 

 
 

6. Conclusions 
 
The solution of the world’s principal problems, such as the obesity epidemic and its 
consequences, have shown an enormous resistance to improvement, in spite of a huge 
investment in both human and economic capital. Although we may legitimately recognise 
that these problems are very “complex”, this has not led to any practical improvement in our 
ability to confront them. This complexity is chiefly associated with the fact that it is our 
conduct that is the root cause of these problems, and it is to a deeper understanding of 
behaviour that we must look to for solutions. In this chapter we have argued that the 
complexity of human behaviour requires an “omic” perspective, whereby the totality of 
factors that affect or influence a given behaviour, and which cross both scales and disciplines, 
must be considered in order to be able to both understand and predict human behaviour as 
well as identify potential interventions for changing it. We have outlined some of the 
conceptual and theoretical elements that we believe are crucial for the Conductome and, 
importantly, we have shown that the construction of a Conductome for a behaviour - 
sedentariness – that is highly relevant for the obesity epidemic, is feasible.  
 
A key component of our approach, and a requirement for constructing the Conductome, is the 
obtention of data that transcends disciplines, and which can be used to link a range of 
relevant behaviours, as effects, to their causes, both intrinsic and extrinsic. A second 
component is the use of advanced modelling tools, such as machine learning, for the analysis 
of such multi-scale data and the construction of explicit prediction models for a given 
conduct. The further understanding, interpretation and utility of these data and models 
requires integrated, interdisciplinary teams and a close collaboration with both government 
authorities and the general public as out future depends on the decisions we make now and in 
the future. 
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