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Abstract: Obesity (and the consequent obesity epidemic) is a complex, adaptive process, 

taking place over a time span of many years. Energy intake is recognized as a potentially 

important driver of obesity, especially in the context of an identifiable energy imbalance 

which, it is surmised, must lead to weight gain. Similarly, energy expenditure must play an 

important role. However, both show an enormous degree of individual variation. Therefore, 

measuring them is an exceedingly difficult task, especially in the context of large 

populations and long time periods. It has been argued that population-level observed weight 

gain can be traced back to very small daily energy imbalances while, at the same time, 

positing that a much larger maintenance energy gap is responsible for maintaining the 

energy requirements of the increased weight population. In this paper we examine the 

relation between BMI and energy intake as functions of age. The convexity of the BMI 

curves as a function of age and gender demonstrate the enhanced obesity risk apparent in 

young adults and women, and imply that no settling points exist at the population level. 

Consistent with other studies, overall weight increases are consistent with a very small 

daily energy imbalance, about 7 cal.  Consumption as a function of age shows a small, 

steady, linear decrease of about 8 cal per year, and can be associated with a maximal energy 

excess/deficit of about 250cal for the youngest and oldest age groups. By examining weight 

differences between age groups as a function of age, we argue that this excess/deficit is an 

important motor for the observed weight differences, and argue that the apparent energy 

imbalance of 250 cal, due to excess consumption, leads to an effective imbalance of only 7 

cal due to the existence of various physiological and behavioral mechanisms that enhance 

weight homeostasis and effectively reduce the energy excess from 250 cal to 7 cal. We 

discuss several possibilities for such mechanisms.   
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1. Introduction 

It is gradually being recognised that standard reductionist approaches to the large 

worldwide increase in obesity levels are not working; neither from a practical perspective 

[1, 2], nor from a theoretical standpoint [3-6]. Complexity science can offer a different 

framework in which the problem of obesity may be studied [7-10]. The fact that obesity is a 

complex problem is manifest in its enormous multi-factoriality, where the individual risk 

factors cover a large spectrum of scales, ranging from the microscopic (such as genetics, 

and epigenetics [11,12]), to the macroscopic (such as government policy and food industry 

marketing [13-14]). 

Science is not accustomed to such systems, especially from a data point of view. 

Besides the fact that it is very multi-factorial, equally important is the fact that obesity is 

highly dynamic and highly influenced by adaptive changes, both in the individual and the 

environment. Unfortunately, our capacity to mathematically model Complex Adaptive 

Systems (CAS) is poor. In the absence of a methodological framework within which to do 

so, at the very least we should adopt a data perspective that respects the complex, adaptive 

nature of obesity and that allows us to develop a deeper phenomenological understanding 

of it from which quantitative models may be built. Put simply, the phenomenology of CAS 

is much richer than that of simpler systems. Even the case of, seemingly, one relationship, 

between Body Mass Index (BMI) and calorie consumption -the focus of this study- is 

enormously complex, and driven by a complex hierarchy of causal relations, many of 

which have caused much controversy, such as the “is a calorie a calorie?” debate [15-19]. 

The multifactorial, dynamic nature of the obesity epidemic as a CAS poses 

particular challenges from a data point of view. First of all, its multifactorial nature requires 

large populations with a large number of risk factors being recorded, so as to be able to 
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represent many potential factors at a reasonable level of statistical significance. Secondly, it 

requires longitudinal studies over long time periods, in order to be able to observe 

adaptation taking place at distinct time intervals. Studies that combine a great deal of data 

depth, large populations and substantial time periods are obviously prohibitively difficult 

and expensive.  

In the case of the relation between BMI and consumption there are myriad studies, 

of different types. Many are associated with controlled feeding studies [20-24], where the 

consumption pattern of a small population (~ 10-100) is controlled over a relatively short 

time period (~ 1–6 months) and related to BMI changes at the individual level. Such studies 

have been used, in conjunction with very detailed mathematical modelling of human 

metabolism [25-27], as the basis for extrapolations to much longer time periods. However, 

there is little to no evidence that physiological and behavioural adaptations on the scale of a 

month or so are analogous to what happens over a lifetime. In contrast, both transverse [28] 

and longitudinal [29] larger scale epidemiological studies have been used to study BMI and 

consumption [30-34]. The problem there is that inferences about the link between 

consumption and weight gain are much more indirect and, therefore, the distinction 

between correlation and causation is even more difficult. In the absence of large scale, 

highly multifactorial, longitudinal studies however, all current approaches require some 

degree of extrapolation.   

A fundamental notion in considering the relation between BMI and consumption, is 

that of energy imbalance [35-44], the idea, with its root in thermodynamics, that weight 

gain has to be due to energy intake being greater than energy expenditure. Undeniable as 

this may be, there are a host of associated unknowns, the most fundamental being why 

energy consumption is greater than energy expenditure in the first place, either at the 
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individual or the population level. It is not fully known how energy is harvested from food, 

both as a function of diet composition – protein versus fats versus carbohydrates – or of 

body state. For instance, it is now known that energy harvest depends on the composition of 

the microbiota [45-48]. In other words, the assumption that all the calorific content of 

ingested food is available for expenditure is not necessarily true and could also be dynamic 

and under some form of adaptive control. In addition, it is not known how much energy is 

expended, at least in realistic conditions and over longer time scales. Although, the doubly 

labelled water technique [49, 50] gives a good representation of the metabolic expenditure 

of energy it does not necessarily give a good account of other types of energy expenditure, 

such as changes in the amount of energy radiated to the environment through vaso-

constriction and vaso-dilation.  

Finally, it is not known for a given energy intake how to map this to energy 

expenditure in a way that includes all the above mentioned processes. The most advanced 

framework for doing so is that developed by Hall and collaborators [25-27], a tour de force 

that derives a phenomenological map between consumption, as broken down into 

proteins/lipids/carbohydrates, and changes in energy storage, given a certain body state in 

terms of the division into fat free and lean mass. The model is phenomenological, as some 

of its parameters are fitted to the results of the Minnesota starvation/refeeding experiment 

[20]. Our chief concern with such models is whether or not they reflect any mechanisms for 

long-term adaptive changes in human physiology, as opposed to just short-term changes, 

and to what extent they miss other mechanisms for energy expenditure and adaptation in 

energy harvesting, some possibilities of which are mentioned above.  

In this paper, we will study the relation between BMI and consumption using data 

from the ENSANUT 2006 study [51, 52] cognizant of the fact that we will, like other 
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epidemiologically based studies, be making strong assumptions and related inferences. We 

will consider consumption levels and BMI as a function of age and then, in distinction to 

other such studies, we will infer a relation between BMI differences between adjacent age 

groups and an associated consumption level. Consequent to this analysis we hypothesise 

that an age dependent excess/deficit of calories relative to a particular settling point (energy 

imbalance) is a prime motor for the convex nature of the relation between BMI and age. 

The maximum inferred energy imbalance is about 250 cal, suggestively similar to the 

average increase in consumption of 252 cal over the period 1971-2000 as deduced from the 

NHANES data, and as reported in [36]. It is also similar to the proposed energy 

maintenance gap inferred in [35]. In purely energetic terms, the observed population level 

weight difference, interpreted as weight gain, is consistent with a very small daily energy 

imbalance of about 7 cal, as inferred from other studies [43]. We resolve the contradiction 

between an effective observed imbalance of 250 cal and an energetically self-consistent 

imbalance of 7 cal by hypothesising that there exist multiple physiological and behavioural 

mechanisms that maintain a much higher degree of homeostasis than would be expected 

given an energy intake excess of 250 cal. We discuss several of these possible mechanisms 

as fruitful ground for further research. 

 

2. Materials and Methods 

The data used is for 20,360 adults aged 20 or above who participated in the Mexican 

National Health and Nutrition Survey in 2006 [51, 52]. This survey used a stratified, 

multistage probability cluster sampling design to select participants of civilian, non-

institutionalized populations. It contained a detailed nutritional questionnaire. The data was 

categorised into three categories – all adults, male and female. Exclusions were based on 
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incomplete data for the purpose of this study, presence of diabetes, pregnancy, total 

equivalent reported caloric intake < 500 cal or > 5,000 cal or age > 80.  

The ENSANUT 2006 survey was a food frequency questionnaire covering 101 

different food items. As is known, any methodology for self-reporting of food intake is 

subject to reporting bias, with each methodology having advantages and disadvantages [53, 

54]. However, despite these defects, food frequency questionnaires are still currently a 

primary way to assess usual dietary intake, and thus, the dietary habits of a population [55-

58] 

For each food item considered in the survey there are corresponding questions for 

the number of days per week and number of times per day the item was consumed within 

the seven days before the interview date. Also included was the portion size (weight) and 

number of portions. The food table included in the questionnaire, as well as the portion size 

(very small, small, medium, large, and very large) and mean weight of portion, for each 

population group, were estimated by a group of researchers from the Instituto Nacional de 

Salud Pública (INSP) from an analysis of the most-consumed-foods data obtained from the 

National Nutrition Survey 1999. We calculated per-week and per-day quantities of each 

food item consumed using the number of days per-week, times per day, portion size 

(weight) and number of portions responses.  The number of times per day variable was not 

included in our analysis, as in a test of the average for 20 randomly selected foods, across 

the four possible responses (1, 2-3, 4-5 or 6 times per day) 91.63% of participants 

responded eating the food just once a day. A similar analysis was also carried out for the 

size of portion question. The percentage of extra-small, small, medium, large and extra-

large portions were taken from every food type with a response for this question. It was 

found that 93.2% of all 142,176 responses for portion size were medium. Also, the size of 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.23.21262191doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.23.21262191
http://creativecommons.org/licenses/by-nc/4.0/


portion question was not included in the questionnaire for all food types. In conclusion, 

food consumption was determined from just the frequency per week and number of 

portions variables. Foods were categorized into 8 groups: Vegetables; Dairy products; 

Cereals and grains; Fresh fruit; Fish, Meat, Eggs and dry legumes; Sugars and fats; and Fast 

food. The food items contained in each food category can be seen in the Supplementary 

Material. Total daily consumption in a given food group was calculated by summing 

(number of times per week * number of portions)/7 over all the foods in a given food 

category. Total food consumption was then calculated by summing the portions consumed 

across all food groups.   

The average total caloric intake for each person in the study was subsequently 

determined by computing the average caloric content of a portion in each food group and 

summing over the portions consumed in each group. The caloric content of a portion for 

each food group, except Fast food, was calculated by using averages provided in the tables 

of "Sistema mexicano de alimentos equivalentes" [59]. Due to the different taxonomy of 

food types, and the different portion sizes used in these tables versus the ENSANUT study, 

it was necessary to use a multiplier as a scale factor for each food group in order to give a 

good approximation to the average calories in relation to one portion of each food group. 

The multiplier was calculated by comparing total caloric intake to the recommended level 

of calorie counters that are based on the base metabolic rate suggested from the Mifflin-St. 

Jeor equation [60]. Through testing, it was determined that a multiplicative scale factor of 

three gave an acceptable range of daily total calorie intake for each food group and for the 

total calories consumed. The average caloric content of the Fast food category was 

calculated by taking the average calories obtained from the United States Department of 
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Agriculture (USDA) Agricultural Research Service [61], for each of the foods contained in 

the group as seen in Table 6 (Fast Food) of the supplementary material. 

Statistical Analysis 

We performed linear regressions using SPSS of age, t, against BMI, and age against 

total calories consumed daily, C, for the three different groupings: all adults, male and 

female with sample sizes: 15,738, 5,662 and 10,076 respectively. 

To consider changes in BMI as a function of age we considered the difference in 

average BMI between ages t and t+1, Δ(t) = (<BMI(t+1)>-<BMI(t)>), where <BMI(t)> is 

the average BMI for the participants of age t in the group of interest. As the data is not 

longitudinal, the populations for each age are not the same and, hence, to smooth the 

fluctuations due to this heterogeneity we considered a centralized moving average of Δ(t), 

ΔMA(t), defined as ΔMA(t) = (Δ(t-1)+ Δ(t)+ Δ(t+1))/3. We considered various other 

smoothing algorithms, such as regressing (Δ(t)+ Δ(t+1))/2 against (C(t)+C(t+1))/2 and 

other definitions of the moving average, with no corresponding significant change in our 

results. 

We further considered regressions of Δ(t) and ΔMA(t) versus t, and Δ(t) and ΔMA(t) 

versus <C(t)>, where <C(t)> is the average reported calorie consumption per day for 

participants of age t in the group of interest. In this case the sample size is 58, 

corresponding to (age_max – age_min -2). In all cases, regressions were tested using only a 

linear term and with both a linear and quadratic term. The regression with the most 

significant f statistic was chosen and is shown in the results section.  

For each regression we show the unstandardized regression coefficients, the 

corresponding standard errors and t statistics and the lower and upper bounds associated 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.23.21262191doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.23.21262191
http://creativecommons.org/licenses/by-nc/4.0/


with the 95% confidence interval for the coefficients. We also show the f statistic, the R2 

value and the significance of each regression. 

 

3. Results 

In Table 1 we see the number and percentage of participants by age interval and 

category in the sample. The larger number of female respondents is due to the fact that 

women were more likely to be at home when the interviewer called.  

 

Gender Male Female All Adults 
  # % Males % Age # % Females % Age # % Adults 
Age              
20-29 1170 20.66% 33.15% 2359 23.41% 66.85% 3529 22.42% 
30-39 1511 26.69% 31.70% 3256 32.31% 68.30% 4767 30.29% 
40-49 1250 22.08% 37.63% 2072 20.56% 62.37% 3322 21.11% 
50-59 755 13.33% 41.26% 1075 10.67% 58.74% 1830 11.63% 
60-69 545 9.63% 43.15% 718 7.13% 56.85% 1263 8.03% 
 70-80 431 7.61% 41.97% 596 5.92% 58.03% 1027 6.53% 
Total 5662     10076     15738   

 

Table 1:  Number and percentage of the different categories by age group 

 

In Figure 1 we see a graph of BMI versus age for the 15,738 included participants. 

Also included is the data corresponding to average BMI, <BMI(t)>, by age, and a quadratic 

polynomial fit to the binned data. A linear fit was also considered but was less statistically 

significant.  
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Figure 1: BMI against age for all adults. 

  

 The summary statistics for this regression can be seen in Table 2, where we see 

the relationship between age and BMI for the full sample, and for the different groupings, 

using a regression with linear and quadratic age terms.  As can be seen, the fit to a quadratic 

curve is very impressive, with f-statistic values in the range 290-370 and absolute t values 

for the regression coefficients between 14 and 27. The relatively low value of the R2 

coefficient is associated with the fact that, as can be seen in Figure 1, although the quadratic 

tendency is very statistically significant, there is also a great deal of underlying statistical 

variation. 
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  Variable(s) Unstd. B Std. Error t f R^2 Sig Lower Upper 
BMI         372.668 0.045 0     
ALL Constant 18.533 0.347 53.445     0 17.853 19.212 
  Age 0.433 0.016 27.278     0 0.402 0.464 
  Age^2 -0.004 0 -26.678     0 -0.005 -0.004 
  Variable(s) Unstd. B Std. Error t f R^2 Sig Lower Upper 
BMI         103.539 0.035 0     
Men Constant 20.06 0.493 40.666     0 19.093 21.027 
  Age 0.321 0.022 14.347     0 0.277 0.364 
  Age^2 -0.003 0 -14.326     0 -0.004 -0.003 
  Variable(s) Unstd. B Std. Error t f R^2 Sig Lower Upper 
BMI         290.452 0.055 0     
Women Constant 17.399 0.46 37.821     0 16.497 18.301 
  Age 0.504 0.021 23.794     0 0.463 0.546 
  Age^2 -0.005 0 -22.767     0 -0.006 -0.005 

 

Table 2: Regressions of BMI against age for all adults, male and female. 

 

 

Figure 2: Daily calorie consumption against age for all adults. 
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In Figure 2 we see a graph of average daily caloric consumption versus age for the 

15,738 included participants. Also included is the data corresponding to average calorie 

consumption, <C(t)>, by age and a linear polynomial fit to the binned data. A quadratic fit 

was also considered but did not lead to a more statistically significant f value. 

 

 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

Total 
Cals         197.52 0.012 0     
ALL Constant 2.565 0.024 105.479     0 2.517 2.612 
  Age -0.008 0.001 -14.054     0 -0.009 -0.007 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

Total 
Cals         69.552 0.012 0     
Men Constant 2.638 0.042 62.809     0 2.556 2.721 
  Age -0.008 0.001 -8.34     0 -0.009 -0.006 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

Total 
Cals         144.087 0.014 0     
Women Constant 2.544 0.03 85.301     0 2.485 2.602 
  Age -0.008 0.001 -12.004     0 -0.01 -0.007 

 

Table 3: Regressions of total reported daily consumption against age for all adults, 

male and female. 

 

 

In Table 3 we see the summary statistics for the relationship between age and total 

calorie consumption for the full sample and for the different groupings, using a regression 

with only a linear term. Once again, the strong statistical significance of the underlying 

relationship is apparent, with f values in the range 69 to 197, and absolute t values for the 
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regression coefficients in the range 8-14. As with BMI, the low R2 value is an indication of 

a high degree of statistical variability. 

 

 

 

Figure 3: BMI against daily calorie consumption for all adults. 

 

 

Turning now to the relation between BMI and daily calorie consumption, in Figure 

3 we see a graph of this relation for the 15,738 included participants. Average daily caloric 

intake was also binned into intervals of 100 cals over the range 500-5000 cal. The graph 

shows the relation between average BMI, <BMI(t)>, as a function of the binned average 

calorie consumption and a quadratic polynomial fit to the binned data. A linear fit was also 

considered but had a statistically less significant f value. Note the much smaller values of 

R2 for this regression compared to those of Figures 1 and 2.  
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  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

BMI         14.806 0.002 0     
ALL Constant 26.791 0.202 132.717     0 26.396 27.187 
  Total_Cals 0.933 0.176 5.308     0 0.589 1.278 
  Total_Cals^2 -0.167 0.034 -4.895     0 -0.234 -0.1 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

BMI         34.706 0.006 0     
Men Constant 26.138 0.141 184.917     0 25.861 26.415 
  Total_Cals 0.328 0.056 5.891     0 0.219 0.437 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

BMI         7.332 0.001 0.001     
Women Constant 27.521 0.266 103.608     0 27.001 28.042 
  Total_Cals 0.876 0.234 3.74     0 0.417 1.335 
  Total_Cals^2 -0.177 0.046 -3.829     0 -0.268 -0.086 

 

Table 4: Regressions of BMI against reported daily consumption for all adults, male 

and female 

 

In Table 4 we see the summary statistics for the regression of BMI on total calories 

consumed daily for the full sample and for the different groupings. In this case, in contrast 

to the relationships between BMI and age, and consumption and age, and as observed in 

Figures 1-3, we see only a weak relation between BMI and consumption, with f statistic 

values that are approximately 15, 2 and 20 times less than the corresponding regressions for 

calorie consumption against age for all, men and women respectively. Note that, although a 

linear fit was found to be more appropriate for men and a quadratic fit for women, the 

impact of the quadratic term, as can be seen in Figure 3, is minimal. 

For BMI, calorie consumption and age it is possible to assign a value to an 

individual study participant. As the data is transversal however, it is not possible to assign a 

specific weight increase or decrease to an individual. For BMI changes therefore, we 
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consider comparing average BMI in one age group versus another. This changes the sample 

sizes from 15,738, 5,662 and 10,076 for all, men and women respectively, to 58, 

corresponding to the independent age increments between ages 20 and 80 using a central 

moving average of BMI change. As might be expected, this potentially reduces the f values 

due to the large decrease in sample size, while at the same time allowing for substantial 

increases in R2 values as the variance is substantially reduced by the smoothing process. 

In Table 5 we see the summary statistics for the relationship between change in 

average BMI, ΔMA(t), and age, t.  The regressions for all categories are statistically 

significant. As anticipated, the smoothing leads to a decrease in the values of f and a strong 

increase in R2. For all three categories it was found that a regression with only a linear term 

was better. The results show that average annual BMI changes decrease linearly as a 

function of age, decreasing by a factor of approximately 0.1kg/m2 each year.  

 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

BMI Change         45.89 0.45 0     
ALL Constant 0.513 0.08 6.428     0 0.353 0.674 
  Age -0.01 0.002 -6.774     0 -0.013 -0.007 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

BMI Change         14.05 0.201 0     
Men Constant 0.387 0.11 3.531     0.001 0.168 0.607 
  Age -0.008 0.005 -3.748     0 -0.012 -0.004 

  Variable(s) Unstd. B 
Std. 
Error t f R^2 Sig Lower Upper 

BMI Change         41.91 0.428 0     
Women Constant 0.595 0.097 6.163     0 0.402 0.789 
  Age -0.012 0.002 -6.473     0 -0.015 -0.008 

 

Table 5: Regressions of centralized moving average of year-on-year BMI change, 

ΔMA(t), versus age for all adults, male and female. 
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In Table 6 we see the relationship between change in average BMI, ΔMA(t), versus 

<C(t)>. Once again, regressions with only a linear term were found to yield more 

statistically significant results.  The regressions are again statistically significant for all 

three categories. The results show that average annual BMI changes increase linearly as a 

function of calorie consumption, increasing by about 0.8 kg/m2 per increase of 1000 

calories.  

 

  Variable(s) Unstd. B Std. Error t f R^2 Sig Lower Upper 
Moving Av.         29.236 0.343 0     
BMI Change Constant -1.954 0.362 -5.392     0 -2.68 -1.228 
ALL Total_Cals 0.904 0.167 5.407     0 0.569 1.239 
  Variable(s) Unstd. B Std. Error t f R^2 Sig Lower Upper 
Moving Av.         13.397 0.193 0.001     
BMI Change Constant -1.625 0.444 -3.656     0.001 -2.515 -0.734 
Men Total_Cals 0.724 0.198 3.66     0.001 0.328 1.121 
  Variable(s) Unstd. B Std. Error t f R^2 Sig Lower Upper 
Moving Av.         22.429 0.286 0     
BMI Change Constant -1.754 0.372 -4.711     0 -2.5 -1.008 
Women Total_Cals 0.833 0.176 4.736     0 0.481 1.185 

 

Table 6: Regressions of centralized moving average of year-on-year BMI change, 

ΔMA(t), against average reported daily calorie consumption, <C(t)>, for all adults, 

male and female. 
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4. Discussion 

We have emphasized that the obesity epidemic is both complex and adaptive. Its 

complexity is manifest in its multi-factoriality, with risk factors ranging from the micro to 

the macro. In the present context, this multi-factoriality is, in turn, reflected in the high 

degree of variance seen in Figures 1-3. In other words, the diffuseness of the “cloud” is not 

associated with statistical (read unpredictable) noise but, rather, with the complex 

heterogeneity that exists between individuals. A consequence of this heterogeneity is the 

difficulty of predicting at the individual level the relation between consumption and weight. 

However, despite this heterogeneity there are very robust, statistically significant, global 

features in the data that characterise the relationship between BMI, self-reported energy 

intake and age.  

The salient facts are the following: i) BMI, or weight, follow a parabolic trajectory 

as a function of age; ii) self-reported energy intake is a linearly decreasing function of age; 

iii) BMI is approximately constant as a function of energy intake when considered across 

all ages.  

The convexity of the relationship between age and BMI implies that the highest 

degree of weight increase/decrease is among the youngest/oldest adults. This convex 

relationship is a robust feature of the relation between BMI and age and also appears in data 

associated with multiple other studies [31, 62], including longitudinal ones [63]. In this 

particular data set, it manifests itself in a remarkably simple way, as seen in Table 2, where 

we see that the quadratic relationship between BMI and age is extremely statistically 

significant.  
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The convex, non-linear nature of the relation between BMI and age in itself has 

several important implications. Firstly, how obesity risk changes as a function of age: 

young adulthood, 20-30, is a particularly crucial time, in which there is an accelerated 

weight increase [62, 63] and at which public health initiatives should be directed. The 

expected increase in BMI from age 20 to 25 is 1.27 kg/m2, corresponding to an increase of 

5% relative to the age 20 BMI, while from age 45 to 50 it is 0.27 kg/m2, corresponding to 

an increase of only 0.9% over the age 45 BMI. More than 27% of total weight change is 

attributable to that initial 5-year period, while for the period 45-50 it is less than 6%. By 

gender, the total increase in BMI from age 20 to peak BMI is 3.37 kg/m2 for men and 4.62 

kg/m2 for women. The increases from age 20 to 25 are 27.6% of total weight increase for 

men and 30.1% for women. Similarly, the maximum decrease in BMI is from age 75-80, 

and is the same as the corresponding increase from 20-25.  The maximum BMI for the 

three groups occurs at ages 54.1, 53.5 and 50.4 for the all, men and women groups 

respectively, with corresponding maximal BMI of 30.25, 28.6 and 30.1.  

The symmetry of the relation between BMI and age is quite remarkable. Perhaps 

even more so given that the data is transversal. Of course, there are several factors that 

should be accounted for when trying to interpret the age dependence of BMI. First of all, as 

ENSANUT is a transversal study, although the present social and economic environment 

for a 20-year-old and an 80-year-old is approximately the same, the environment at age 20 

of the 80-year-old would have been substantially different. In other words, the group of 80-

year-olds have a 60-year life history inherent in their BMI distribution. Secondly, there is a 

potential selection effect, in that, in a strictly longitudinal, cohort study, some participants 

would have died, and one would expect an enhanced mortality rate for the morbidly obese. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.23.21262191doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.23.21262191
http://creativecommons.org/licenses/by-nc/4.0/


We have examined this hypothesis in the context of NHANES data [28]. However, the 

contribution to the decrease in average BMI associated with potentially enhanced mortality 

of the obese is substantially smaller than the observed overall effect here. This means that 

an explanation of the decrease in BMI beyond age 50 involves multiple factors. Indeed, in 

geriatric studies [64-66] a decrease in calorie consumption, particularly associated with 

reduced protein consumption, has been noted but not explained [67-70]. In addition, the 

point of maximal BMI occurs at about age 50, much younger than where one would expect 

enhanced mortality to play a significant role. In other words, the fact that the population 

average of BMI begins to decrease after age 50 must be explained by factors other than a 

survivor bias. 

Turning now to the relation between age and total energy intake, the fit to a linear 

model, seen in Table 3, is extremely statistically significant though, as with the BMI-age 

relation, it manifests a high degree of variance. The reason for this is analogous to that of 

BMI itself, in that there is a high degree of multi-factoriality associated with consumption 

levels. From the fitted relation, we may deduce that maximum average caloric intake, for 

both genders, occurs at age 20, and the minimum at age 80. The maximum average calorie 

intake across all participants is 2,565 cal at age 20. For men it is 2,638 cal and for women 

2,544 cal. All groups are consistent with an average yearly decrease in daily energy intake 

of approximately 8 cal. This, of course, is an exceedingly small number, corresponding to a 

0.32% reduction in daily calorie intake per year, relative to the male daily average, and a 

0.3% reduction relative to the age 20 daily maximum. However, it corresponds to an 

important decrease in overall energy intake of approximately 500 cal when aggregated 

between age 20 and age 80.  For women, the average yearly reduction is 0.4% of average 
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daily caloric intake and 0.31% relative to the age 20 daily maximum. 

Considering the relation between BMI and calorie consumption, as seen in Table 4: 

Compared to the results of Tables 2 and 3 the statistical relationship between BMI and 

consumption is much weaker than that between age and BMI, or age and energy intake. For 

all participants and women, the f and R2 statistics are about an order of magnitude less, and 

the t statistics for the regression coefficients about 5 times smaller. For men, although there 

is a notable drop in the statistical significance of the BMI versus energy intake relation 

relative to the BMI versus age and consumption versus age relations, there still appears to 

be an underlying correlation between BMI and energy intake. However, the generally much 

weaker relationship between BMI and energy intake is consistent with the conclusion that 

high BMI individuals do not consume more than low BMI individuals when considered 

across all age groups. In other words, this evidence suggests that: “you are not what you 

eat”. Note that this conclusion does not imply that an obese individual of a given age 

consumes less than a normal weight individual.  

BMI Changes as a Function of Consumption 

If we accept that it is energy imbalance that causes weight gain, a natural hypothesis 

for the relation between BMI and energy intake can be deduced from Tables 2 and 3, if we 

take the maximum of the parabola to be the energy balance point, where energy intake does 

not change BMI. In this case, relative to this energy balance point of the distribution at age 

tb, for age t < tb we may define an “excess” energy intake, while, for t > tb, we may define 

an energy “deficit”, with the corresponding maximum energy intake excess/deficit being 

given by C(t = 20) and C(t = 80) respectively. Thus, the quadratic nature of the BMI vs age 
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distribution would imply that there exists a positive energy imbalance up until age, tb, 

corresponding to the maximum, where energy imbalance is inferred to be zero, as there is 

no change in BMI, followed by a negative energy imbalance. Moreover, the curve implies 

that, at least at the population level, there is no settling point per se [71] but, rather, a 

continuous change in BMI as a function of age.  

This, in turn, leads us to consider differences in BMI, rather than BMI itself, across 

the population as a function of age. In Table 5 we see the results of a regression of BMI 

change against age. The relevant statistical diagnostics must now be interpreted in the 

context of a statistical sample of 58 data points as opposed to 15,738. The maximum BMI 

change is predicted to occur between age 20 and age 21, with corresponding values of 

0.513 kg/m2 (about 1.23kg) for all participants, 0.387 kg/m2 (about 1kg) for men and 0.595 

kg/m2 (about 1.36kg) for women if we consider the average height in each group. This is 

consistent with the interpretation that, in this population, year on year changes in BMI and 

weight for women are substantially higher than those for men. The age at which BMI 

changes are zero is 51.3 for the group of all participants, 49.6 for women and 48.4 for men. 

These are generally consistent with the ages - 54.1, 50.4 and 53.5 for all, women and men 

respectively - associated with the maximum of the BMI versus age models, tb. Beyond 

these ages, BMI changes are negative, corresponding to a decrease in average BMI as a 

function of age with the maximum yearly decrease at age 80.  

Note that this interpretation also gives a natural explanation for why there is no 

significant increase in BMI as a function of energy intake in Figure 3. Referring to Figure 

2, due to the symmetry associated with the BMI vs age distribution, a given average BMI 

occurs at two symmetrically distributed ages. For instance, average BMI = 25 occurs at age 
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20 and age 80. However, at those symmetrical points the energy intake has equal 

contributions from an excess and a deficit, such that the sum is approximately zero. In other 

words, the data is consistent with the observation that the population characterised by a 

given average BMI is composed of two sub-populations, one younger that has an excess 

energy intake, and an older one that has an energy deficit. Of course, in this conclusion we 

are not stating that BMI does not increase for an individual as a function of energy 

imbalance; as, for example, in overfeeding. Rather, at the population level we are observing 

that BMI is not a single-valued function of energy intake.  

We hypothesize then that the observed increase and subsequent decrease in BMI 

seen in Figure 2 is generated by an energy imbalance associated with an excess and 

subsequent deficit of calories, as seen in Figure 3. This hypothesis is examined and 

quantified in Table 6, where we see that the change in BMI is linearly correlated with 

calorie consumption. From Table 6 we may deduce that, for the all participants group, 

2,162 cals is the reported consumption level that corresponds to zero increase in BMI. For 

men, the corresponding level is 2,244 cals, and for women 2,106 cals. With the relationship 

between BMI change and reported calorie consumption in hand that is consistent with the 

data, we may deduce what excess consumption leads, on average, to a given BMI increase. 

For instance, for women, a yearly increase in BMI of one kg/m2, corresponding to a 2.6 kg 

weight gain per year for an average height woman, implies a daily dietary intake of 3,306 

cals, compared to a 2,106 calorie no BMI increase base level, or a recommended intake of 

approximately 2,000 cals. This corresponds to a 57% increase in calorie consumption. A 

BMI change of 1 kg/m2 every two years, corresponding to passing from overweight to 

obese in 10 years, corresponds to a calorie consumption of 2,706 cals, an approximately 
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28% consumption increase over the zero BMI change rate. However, in Figure 1 and Table 

1 we observe that average BMI change, as a function of age, is not large, corresponding to a 

change in average BMI from overweight to obese over a period of 30 years. The reported 

consumption level consistent with this BMI growth level for women is 2,306 cals per day, 

only 200 cals (9.5%) per day more than the zero BMI change level. For men, a BMI change 

of 1 kg/m2 per year, i.e., on average a 3kg per year weight change, corresponds to a 

consumption level of 3,626 cals compared to the 2,244 zero BMI change rate, i.e., a 61% 

increase in caloric intake relative to the zero BMI change level. A BMI change of 1 kg/m2 

every two years corresponds to a consumption level of 2,935 cals, and a change from 

overweight to obese (change from BMI = 25 to BMI = 30) over a 30-year period, as seen in 

the data, to a daily intake of 2,475 cals, 10% larger (230 cal) than the zero BMI change 

intake level.  

As well as determining what energy intake corresponds to a given BMI change, it is 

also useful to determine the effect of a given fixed increment in energy intake. For men, for 

every thousand cal increase in daily consumption, BMI increases by 0.72 kg/m2 per year, on 

average about 1.94kg, while, for women, the corresponding increase is 0.83 kg/m2, 15% 

greater than the corresponding male value, but also corresponding to a similar weight 

increase of about 1.89kg. The maximal energy excess of 268/243 cal per day for 

men/women at age 20 corresponds to a BMI increase of 0.19 kg/m2 and 0.20 kg/m2, 

corresponding to a weight gain per year for average size men/women of 0.53/0.46 kg 

respectively. Note that this energy “gap” has been derived at the population level and is not 

the same as the standard energy gap associated with the difference between daily energy 

intake and expenditure for an individual [35-37].  
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It is interesting, however, that the inferred motor for BMI differences here is about 

the same as the maintenance energy gap/energy flux gap [25, 43, 72] that has been derived 

from comparing the overall weight gain in the US population over a 30-year period, to the 

different energy requirements of the average population weights at the two extremes of this 

period, as derived from studies that used the doubly-labelled water technique to measure 

total energy expenditure versus weight. This analysis relies on the assumption that on a 

daily basis each individual is in approximate energy balance and that the end points of the 

analysis can be identified as “settling points”. As emphasized by Schutz et al [36], 

however, in reality this is not so much an energy “gap” related to the notion of an 

imbalance that can be interpreted as a driver of weight change but, rather, an obligatory 

consequence of the existence of a true energy gap/imbalance. In contrast, the excess 

consumption noted here we do interpret as a true energy imbalance and the driver of 

population level BMI changes.  

It is important to emphasize that the observed and postulated relationships between 

energy intake and BMI do not offer a “complete” explanation but, rather, offer evidence 

that pure caloric consumption is, indeed, an important quantifiable motor for BMI increase. 

The large variance inherent in the relationship is evidence of the complex, multi-factorial 

nature of the obesity epidemic and indicates the importance of adopting a multi-factorial 

modelling approach in order to determine what part of this variance is predictable through 

the effect of other measurable variables and what part is irreducible. 

Thus, we conclude that the observed distributions of BMI and energy intake are 

consistent with the hypotheses that: i) excess energy intake is an important driver of BMI 

increases; ii) that this energetic excess is a decreasing function of age, being a 
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maximum/minimum at age 20/80 (for this population); and iii) that the relative excess for a 

given age is substantially greater for women than men. The overall conclusion can be 

phrased thus: it’s not that “you are what you eat”, but more that “you become what you 

eat”. 

Population Energy Balance as an Emergent Phenomenon 

An important lesson to draw from our analysis is that associated with the difficulty 

of separating signal from noise. The data is consistent with the hypothesis that, at the 

population level, there is an average yearly decrease of about 8 calories in daily 

consumption. However, the standard deviation of the daily consumption for this population 

is about 1300 cal. Even the maximum daily calorific excess of 200-300 cal is small 

compared to this number. Additionally, the average increase in BMI from age 20 to age 50 

is about 0.15 kg/m2 per year, corresponding to an average weight gain of about 400g per 

year. Compared to the standard deviation in BMI over the population of 5.17 kg/m2 this is 

also a very small amount. This shows the difficulties of determining the relationship 

between consumption and BMI change at the individual level under realistic conditions, 

i.e., not with intense overfeeding or starvation, or with small populations. Both large 

sample and very long study periods are necessary. For a year-long study in realistic 

conditions we may be trying to identify a change of the order of 400g in the average weight 

of the studied population and a change of 8 cal in their daily consumption. In other words, 

the very small population level changes in daily consumption and weight are truly emergent 

phenomena that cannot be observed at the individual level. Moreover, the huge variance in 

consumption and weight gain at the individual level casts doubt on the practicality of any 

“small changes” approach [44, 73] to interventions.  
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Where Do All the Calories Go?  

The above, observed weight differences are very small when compared to the 

expected weight gain if we posited the above population level energy imbalance, of the 

order of 200 cal, to be valid at the individual level, as noted in various more controlled, 

longitudinal studies [21-24] where, overfeeding specifically took place. For instance, in 

[35] a 75% increase in daily energy intake, corresponding to about 1,500 cal, for 20 days, 

led to an approximately 7% increase in weight (approx. 4kg) over that period, with a 

similar increase in Base Metabolic Rate (BMR). A naïve linear extrapolation would lead to 

a yearly weight increase of 80kg! For an excess consumption of 250 cals per day one would 

expect a yearly increase of 13.33kg. Indeed, taking the population level energy balance 

point to be at age 50, the excess calorie intake over the age period 20-50 is over one million 

calories! If one used the standard 3500 cal/pound rule this would correspond to an increase 

in weight of about 140kg over that time period. Even considering a much more 

sophisticated adaptive model [25-27] for relating excess consumption to weight gain, the 

actual, observed weight gain at the population level is far below what one would expect 

given the very large excess calorie intake indicated by the consumption pattern. In fact, just 

converting the overall weight gain at the population level into calories corresponds to a 

daily imbalance of about 7 cal; much, much smaller than our inferred energy imbalance of 

200-300cal. 

So, where do all these calories go? Our analysis dictates that this large excess 

translates into a relatively mild increase in BMI. Although it is generally accepted that 

obesity results from an energy imbalance between energy intake and energy expenditure, 

and metabolic energy expenditure can be measured relatively accurately using the doubly-
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labelled water technique, there is a great deal of uncertainty as to measurement of energy 

intake. Although many studies [20-24] have directly measured energy intake and 

expenditure in highly controlled, and hence highly artificial, settings, these are generally 

restricted to small populations and relatively short amounts of time. In these studies, energy 

intake can be measured in a relatively precise way, while in indirect studies energy intake is 

inferred via self-reported food intake, with the latter being subject to well-known reporting 

biases [53-58]. However, in both cases, there is a great deal of uncertainty as to how energy 

intake is partitioned among the different mechanisms of energy expenditure, such as base 

metabolic rate, thermogenesis, weight gain, movement, excretion etc.  

To reconcile the apparent contradiction that a relatively large imbalance 

(approximately 200-300cal) in energy intake (consumption) seems to be driving a weight 

change that, energetically, could/should be explained by an imbalance of approximately 7 

cal, we hypothesise that there are multiple physiological and behavioural mechanisms by 

which energy is dissipated and a higher degree of homeostasis than might be expected is 

maintained. Some of these are already known and have been discussed. The most obvious 

one is that an increase in weight leads to an increase in BMR. Using the Mifflin-St. Jeor 

equation the maximal year-on-year difference in BMR would be at age 20 and corresponds 

to a difference of only 7 cal. Indeed, over the 30-year period to BMI maximum the increase 

in BMR due to weight increase is largely cancelled by the reduction due to aging. Another 

factor would be physical activity, where it has been argued that heavier individuals will 

have higher energy requirements due to having to move a greater mass. However, in 

contrast to this is the gradual reduction in intense physical activity to be expected as a 

function of age.  
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Besides these potential factors, we believe there are potentially many more and that 

relative weight homeostasis is highly complex and adaptive and associated with multiple 

mechanisms. One, we believe to be particularly relevant is that of the effect of body, not 

core, temperature. In [75], in a pair of complementary experimental protocols, it was shown 

that body temperature increased linearly as a function of BMI, with an average difference 

of about 0.01 degrees Celsius per unit increment in BMI. Although this may seem very 

small it can correspond to a difference in energy loss of up to several hundred calories 

daily. Additionally, it has also been shown that the microbiota of an individual may play an 

important role [45, 46]. We believe that this role may potentially also be a positive one, 

reducing energy harvest as a potential adaptive response to an energy excess [47, 48].  

Besides identifying potential adaptive mechanisms by which energy excess may be 

ameliorated, we believe it is also important to determine the characteristic timescale of each 

mechanism. For instance, it is clear that obesity itself at the population level is a long-term 

response to an energy imbalance. It may be that the relevant physiological and behavioural 

drivers of the obesity epidemic at such large scales are just not visible or easily measurable 

in short term experiments carried out under controlled conditions. 

Gender Differences and Unit Bias 

Finally, we turn to the question of gender differences. Many studies have shown 

that women have a higher average BMI than men [44]. The data analysed here is consistent 

with this. However, we may go further and hypothesise that an important reason for this is 

that, in relative terms, the excess consumption of women is substantially higher than that 

for men. Of course, this begs the question of: why are women consuming in excess more 
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than men? Besides a multitude of potential lifestyle factors, we wish to indicate a 

behavioural one associated with a particular cognitive bias – the “unit bias” [76].  This bias 

is such that people seem to think that a unit of some entity (with certain constraints) is the 

appropriate and optimal amount. Given that food portion sizes are generally gender neutral, 

it is clear that consumption of a portion will lead to an excess relative calorific intake that is 

greater for a woman than a man.  If there is a bias towards consuming the entire portion for 

both men and women, then this would lead to a greater excess for women versus men.  

 

5. Conclusions 

There are several conclusions to be gleaned from our analysis that could and should 

have implications for public policy. Firstly, the strong convexity of the BMI curve as a 

function of age, which is seen in studies in other countries, indicates the importance of 

prevention measures in young adulthood, when considering the adult population. Various 

studies have shown the difficulty of weight reduction in the obese, for example [77], where 

only 5% of the obese managed to return to a normal weight. However, the challenge there 

is how to convince a young person who is currently only slightly overweight that they are 

on the path to obesity and therefore need to implement behaviour change now?  

Secondly, the fact that the BMI curves are steeper for women than men, once again 

a feature common to several countries, indicates that young adult women are particularly 

susceptible to weight increase and therefore should be the target of specific interventions. 

We have argued that a potentially important contributing factor is the existence of the unit 

bias, in conjunction with the fact that portion sizes, especially outside the home, tend to be 
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the same, independent of BMI, and therefore the consumption of the same portion by a 

woman or smaller man should have a relatively larger impact than on a large man.  

Thirdly, the appearance of weight decrease beyond age 50, that accelerates with 

age, is consistent with many geriatric studies, where weight reduction can in fact be a 

health hazard. Although, weight reduction in the elderly is a multi-factorial phenomenon 

we argue that an important motor is simply an overall reduction in calorie consumption. 

Lastly, and perhaps more importantly, we have argued that an excess consumption that 

gradually decreases with age is an important motor for the obesity epidemic, with an 

inferred maximum excess of about 250 cal in young adults. Given that the energetically 

consistent imbalance associated with the observed weight gain is only about 7 cal, we 

argued that these two numbers can be reconciled by hypothesising the existence of multiple 

physiological and behavioural mechanisms by which weight homeostasis is maintained at 

an imbalance level consistent with a 7 cal per day imbalance in spite of the fact that the 

individual is assailed on average by an imbalance of up to 250 cal.  

We suggested several possible mechanisms by which this enhanced homeostasis 

may be achieved, with associated evidence. An important potential implication of this is, if 

we invert the logic – inferring that, perhaps, a reduction of 250 cal per day over an 

extended period, up to 30 years, would only lead to a weight decrease equivalent to an 8 cal 

reduction! If this be the case, then this emphasizes the vital importance of preventing 

people from ever becoming overweight in the first place. In summary, the above 

conclusions can be stated as: You aren’t what you eat, you become what you eat - slowly.      
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Study Limitations 

The chief limitation of this study is that it is transverse not longitudinal. Although 

this does not affect the validity of our results it does play a role in their interpretation. In 

particular, in our positing a causal relationship between consumption and changes in BMI. 

A difference in BMI between two adjacent age groups, corresponding to two different 

populations, is interpreted as a BMI change within the same population. The chief possible 

source of error here is that adjacent age groups are statistically different with respect to 

potential confounding variables. As the study protocol was aimed at obtaining a 

representative sample over the Mexican population we believe that there are no significant 

differences in gender/educational level etc. between adjacent age groups. Of course, when 

comparing very distinct age groups, for example 20-21 with 79-80, there will be potentially 

significant differences. However, as our results are dependent on the consumption-BMI 

increase relation between adjacent age groups we believe that the significant differences 

that would accrue over a long time period will not affect our conclusions. For example, one 

might argue that the fact that the 80-year-old age group consume less than the 20-year-old 

age group is purely due to environmental factors, and therefore the interpretation that this 

represents an intrinsic reduction in an individual’s consumption as a function of age is 

incorrect. We believe it to be exceedingly unlikely that environmental factors have changed 

in precisely such a way so as to give rise to the behaviour seen in Figures 1-3 as opposed to 

these being principally a reflection of changes in an individual’s BMI and consumption as a 

function of age.    

In the absence of detailed, long term, longitudinal studies that monitor consumption, 

inferences from transverse data are important from the point of view of hypothesis 

generation and self-consistency. It is also noteworthy that some of the base 
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phenomenological elements, such as convexity of the BMI versus age relation and the 

decrease in calorie intake as a function of age, have also been noted in other large scales 

studies, such as NHANES.   

Another limitation is that consumption is self-reported and, therefore, subject to the 

various biases examined at length in the literature [53-58]. Once again, in the absence of 

more precise measures applicable to large populations over long term periods, self-

reporting remains the most important and used means to measure consumption.  

A third limitation is that, in the absence of energy expenditure data, we are inferring 

an energy gap at the population level by relating self-reported consumption at the 

population level to weight gain at the population level.     
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Supplementary material 
 
Food items contained in each food category of the ENSANUT 2006 food frequency 
questionnaire. 
 

Vegetables: 

Soup or broth with vegetables 
Cream of vegetable 
soup  Tomato Leafy greens 

Chayote Carrot Zucchini 
Broccoli or 
cauliflower 

Cabbage Green beans Corn Lettuce 
Cactus leaves Cucumber Avocado Other vegetables 
Boiled potatoes Nutritive drinks from the OPORTUNIDADES program 
 

Milk products: 
Liconsa milk Other types of milk Flavored milk Cheese 
Yoghurt Danonino or similar Yakult or similar   
 
 

Cereals and grains: 
Peanuts, nuts and seeds Pasta soup  Sopa de pasta b 
Flour tortillas (MASECA or MINSA 
flour) Tortillas (store bought) 

Flour tortillas (wheat 
flour) 

Lentils, garbanzos, broad bena, haricot 
bean Beans a Beans b 
Tortillas made from nixtamal Rice White bread 

Whole grain bread 
Salted biscuits Galletas 
saladas Breakfast cereals 

 
 

Meat, fish, eggs: 
Pork  Beef Dried beef (machaca) Sausage or chorizo 
Chicken a Chicken b Chicken c Egg a 
Egg b Fresh fish Dried fish Tuna and sardines 
Seafood (shrimp, oysters, etc.)   
Pork or turkey hotdog, ham or turkey slices etc.   
 
 

 

Fast food: 
Sandwiches Hamburger Pizza Hot dog 
Pozole Tamal Maize atole   
Sopes, quesadillas, enchiladas, tacos or gorditas de comal (not fried) 
Sopes, quesadillas, enchiladas, tacos or gorditas (fried) 
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Sugars and fats: 
Normal soft drink  Diet soft drink Margerine 
Juices and flavoured waters with sugar  Tea with sugar Chocolate 
Drinks  with sugar Coffee with sugar Fried food 

Milk with sugar 
Cupcakes and doughnuts 
(indust.) Cream 

Milk with chocolate o other flavoring  Sweet biscuits  Butter 
Sugar, for example in strawberries or bananas and 
cream  Jelly, Flan Mayonnaise 
Sweet bread (except doughnuts and churros) Cereal bars Sweets 
Doughnuts and churro (bakery) Cakes and pies Fried banana  

Fresh fruit: 
Natural juices without sugar  Banana Jicama Orange or mandarin 

Apple or pear 
Watermelon or 
cantaloupe Guayaba Mango 

Papaya Pineapple Grapefruit Strawberry 
Other fruits       
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