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Abstract
Obesity is a result of a long term energy imbalance that is a consequence of those decision-making processes
associated with energy intake and expenditure. The way in which living organisms make these decisions fits the
definition of heuristics: cognitive decision-making processes that have a rapid and effortless implementation which
can be very effective in dealing with scenarios that threaten an organism’s viability. We study the implementation
and evaluation of heuristics, and their associated actions, using agent-based simulations in environments where the
distribution and degree of richness of energetic resources is varied in space and time. Artificial agents utilize foraging
strategies, combining movement, active perception and consumption, while also actively modifying their capacity to
store energy, a ”thrifty gene” effect, based on three heuristics from the CONSUMAT model. We show that the selective
advantage associated with higher energy storage depends on both the foraging strategy and heuristic used, as well
as being sensitive to the spatio-temporal distribution of energy resources, with the existence and duration of periods
of food abundance and scarcity being crucial to the existence of this selective advantage. We conclude that a ”thrifty”
gene is only beneficial in the presence of a ”sloth gene” and a ”glutton gene”
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Introduction

The current obesity epidemic and its consequences represent
one of the world’s most challenging public health problems.
According to the (World Health Organization, 2020), in 2016
more than 1.9 billion adults were considered overweight
and, of these, more than 650 million were classified as
obese. Obesity is associated with an increase in both general
and specific-disease related mortality (Flegal, Graubard,
Williamson & Gail, 2005; Flegal, Graubard, Williamson
& Gail, 2007), with the most important obesity related
comorbidities including: type 2 diabetes mellitus, coronary
heart disease, high blood cholesterol level, high blood
pressure and osteoarthritis (Must, Spadano, Coakley, Field,
Colditz & Dietz, 1999). Overweightedness and obesity are
associated with a body composition linked to excess fat and
are determined using Body Mass Index (BMI), which is
calculated as weight divided by height squared, expressed in
metric units and rounded to the nearest tenth. Overweight
is defined as BMI between 25.0 and 29.9 and obesity as
BMI equal or greater than 30.0. This relatively simple
classification of fat levels is widely used and is reliable
enough for diagnosis (Bray, 2007).

Fat accumulation associated with obesity is due to a
long-term positive energy imbalance, where energy intake
from food consumption is greater than energy expenditure
and is attributed to the complex interaction between an
individual and an obesogenic environment. Although the
wide availability of high calorie content food and drink
and the prevalence of sedentary lifestyles are widely
thought to be the principal causes of the obesity epidemic,
modeling of this phenomenon is exceedingly difficult

due to the myriad factors that may influence energy
intake and expenditure. For example, (Spiegelman & Flier,
2001) detail expenditure as due to physical activity, base
metabolism, and adaptive thermogenesis. However, each one
of these is itself constituted and influenced by numerous
behavioral, physiological and genetic factors. Moreover,
each element relates to others at multiple levels, thereby
creating complex feedback loops. Although traditional,
reductionist approaches have been the dominant framework
for analyzing the problem, recently, more systems-based,
or complexity-based, papers have appeared. For instance,
(Huang, Drewnowski, Kumanyika & Glass, 2009) propose a
systemic, multilevel approach to address energy imbalance,
providing a framework that makes possible the individual
analysis of processes and social interactions. In this
broader scope it is possible to study obesity and the
concurrent obesity epidemic as a Complex Adaptive System
(Hammond, 2009). Complexity-based approaches have also
been used to study other aspects of the phenomena, such as
the role of nuclear receptors in lipid metabolism and energy
expenditure (Evans, Barish & Wang, 2004), or the role of
social relationship networks in the emergence of obesity
(Christakis & Fowler, 2007). Certainly, given the importance
of the problem, and the fact that, globally, it is worsening,
new approaches are to be welcomed.

A recurring question in obesity research is: what has led to
an explosion in obesity incidence in the last generation or so?
Have certain environmental factors changed radically? If so,
which? Have our decision making processes changed? Both?
One interesting line of research has been that associated
with the notion that we are genetically mal-adapted to the
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current obesogenic environment relative to the environment
in which our species originated. Associated with this idea
is the “thrifty” genotype hypothesis (Neel, 1962; Johnson
& Andrews, 2010), which is based on the idea that our
evolution, in an environment where food resources were
scarce, favoured those genes that allowed for better fat
storage. However, within this genomic approach, although
there is ample evidence that certain genetic polymorphisms
can lead to an altered physiology that favours fat storage,
these individual genetic alterations are relatively rare and
cannot be used to explain a phenomenon as universal
as the current obesity epidemic. At heart, obesity, seen
as a consequence of energy imbalance, is not really a
physiological problem due to a genetic predisposition to
fat deposition but, rather, is a result of human behavior -
principally overeating and sedentariness - that are associated
with sets of individual decisions - eat/don’t eat, seek/don’t
seek food etc. Furthermore, these decisions are affected by
a multitude of factors beyond those that might be associated
with a microscopic ”ome”, such as the genome, proteome
or transcriptome. Indeed, it has been argued that what is
required is a “Conductome” (Stephens, 2021), thought of as
the universe of factors that influence a particular behaviour,
such as overeating. In this sense, if there is to be a genetic
component, then, as well as explaining certain physiological
predispositions, it should also explain why our behavior is
obesogenic.

Related to this notion is the question of whether a
Conductome that leads to a positive energy imbalance
through overconsumption and lack of physical activity is
a purely human phenomenon or not. Recent evidence has
identified obesity epidemics in various animal populations
(German, 2006; Chandler, Cunningham, Lund, Khanna,
Naramore, Patel & Day, 2017). In this case, we may ask:
what is the origin of these obesity epidemics? Do they have
common roots with the human version? For instance, we may
ask: Do other species have the “thrifty gene” behaviour?

Accepting that obesity arises from obesogenic behaviors
in a potentially obesogenic environment, and given
the tremendous multi-factoriality of the problem, with
heterogeneous, dynamic and adaptive risk factors, that
range from the genetic to the social, an agent-based
modeling approach offers several advantages relative to
purely empirical approaches, or more standard mathematical
modelling, not least of which is the possibility to compare
and contrast behaviours in different environments. In this
paper an agent-based model (ABM) is presented in order to
simulate decision making in different food environments and
show how the heuristic-environment interaction can lead to
persistent energy imbalances.

Heuristics and food decision-making
Decision-making is central to understanding energy imbal-
ance. A person decides what, when and how much to eat and
how to expend their energy. However, individual choices are
often constrained by factors beyond one’s immediate control.
In a classical decision-making framework, environmental
boundaries are tied to the exhaustive and exclusive sets of
uncertain events and available actions (Lindley, 1991). This
could include, for instance, resource scarcity scenarios or
strong competition between species. Besides these factors,

we need to account for the fact that physical and emotional
internal states can also modify decisions. A framework for
understanding decision making from a complexity perspec-
tive needs to consider how every factor shapes every other. A
generalized deviation from a consumption-expenditure strat-
egy that keeps fat at healthy levels occurs in a wide variety
of societies and cultures, as evidenced by the world obesity
epidemic. What is behind this apparent universality? In this
context it is vital to better understand the decision making
process ((Haselton, Nettle & Murray, 2005) (p. 725)).

Decision-making theories based on utility function
maximization are frequently inconsistent with human
behaviour. The term “cognitive bias” was used in (Tversky
& Kahneman, 1974) to refer to these discrepancies, which
were first observed in the context of probabilistic judgments,
difference estimations and risk evaluation. A common
characteristic of all these situations is attribute substitution,
i.e., the exchange of a computationally complex problem for
a simpler one. One of the main criticisms of this description
is that it just considers cognitive bias to be an inferior,
secondary alternative due to a lack of sufficient computing
resources (Gigerenzer & Gaissmaier, 2011; Gigerenzer,
Fiedler & Olsson, 2012; Mousavi & Gigerenzer, 2014). A
number of studies have found, however, that in particular
contexts this kind of decision-making process generates
better results than purely utility-based decision making
(Cosmides & Tooby, 1994; Reyna, 2004; Gigerenzer &
Gaissmaier, 2011). The concept, which we shall refer to
as heuristic, to avoid any negative connotation, provides
an explanation of efficient and immediate responses to risk
scenarios.

Eating tends to involve more heuristic judgment than most
behaviours, due to its intimate relationship with survival
(Cohen & Babey, 2012). Some important heuristics in food
decisions are based on only one or two important food
attributes, such as portion size (Geier, Rozin & Doros, 2006),
which is an important element in the obesity epidemic,
and disregard many others (Scheibehenne, Miesler & Todd,
2007). Attentional heuristics, related to eating stimuli
(Shafran, Lee, Cooper, Palmer & Fairburn, 2007), are also
important. Much work on marketing and product placement
has been carried out guided by these principles, in order to
encourage food purchases by changes in the environment
(Cohen & Babey, 2012). Heuristics are particularly important
in situations where survival is at risk and there is insufficient
time to perform a detailed deliberation, or in states of
cognitive depletion. These scenarios are not exclusive to
human decision-making but are common to many living
organisms. As pointed out in (Marsh, 2002), many animal
behaviours that fulfil simple decision rules can be viewed
as heuristics. For example, when animals try to flee from
predators, when mating or when foraging, heuristics can
confer advantages if they represent appropriate responses to
the corresponding environmental conditions. Many questions
arise: Is it reasonable to call decision-making mechanisms
observed in animals heuristics? What about even less
cognitively developed organisms? Is the mere presence of the
risk of death sufficient to generate a heuristic in an organism?
How exactly does the environment modify the interpretation
of precariousness of an organism?
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It is the adaptive match between cognitive and ecological
structures that constitutes the basis of heuristic formation
(Gigerenzer, Fiedler & Olsson, 2012). Heuristics are
a natural consequence of certain, key environmental
properties: Uncertainty, redundancy, finite sample size and
variability in the relevance of environmental features.
Additionally, as decision-making involves the expenditure
of energy, final decisions are related to the environmental
availability of energetic resources and the constraints
on the execution of a specific physical activity. The
environment provides a distribution of food resources
with a particular energy density in space and time and
an energy cost associated with their consumption. The
sensorial perception of the characteristics of a food resource
depends on the complexity of the consuming organism.
For example, humans perceive energy density through
visual and olfactory cues (Chambaron, Chisin, Chabanet,
Issanchou & Brand, 2015; van Beilen, Bult, Renken, Stieger,
Thumfart, Cornelissen & Kooijman, 2011) that link high
energy density with a higher degree of palatability, which
is reduced during intake by the sensation of food-specific
satiety (Drewnowski, 1998). Sensory stimuli from exposure
to food can also generate neurally mediated responses, that,
arguably, facilitate the assimilation of nutrients (Mattes,
1997). Uncertainty in the availability of food is possibly
one of the main environmental drivers affecting food related
heuristics. An organism’s learned experience in a given food
environment allows it to label it as abundant or scarce in
food resources for example. So, a food rich environment
may provide enough resources such that consumption is only
linked to physiological indicators of internal low energy
states, whereas food scarcity may induce consumption
beyond satiety so as to accumulate reserves. Uncertainty
in this sense is a powerful motive for the development of
heuristics and other cognitive capabilities, for example, the
metacognitive judgments that have been observed in humans
and animals (Smith, Shields & Washburn, 2003; Smith &
Washburn, 2005; Kornell, 2009; Dunlosky & Bjork, 2013).

Agent-based modeling of heuristics and the
CONSUMAT model

The flexibility and heterogeneity of ABMs makes them
a suitable testing ground for studies of cognition and
decision making. Their bottom up approach makes it
possible to see how a particular microscopic specification
can lead to emergent macroscopic regularities (Epstein,
2006; Macal & North, 2010). In particular, how a specific
interaction with the environment can generate a resilient
heuristic decision. Various approaches have been proposed
to model decision-making processes in ABMs using purely
reactive agents with if-then rules that are inspired by
psychological and neurological architectures (Balke &
Gilbert, 2014). (Jager & others, 2000), for instance, proposes
a decision architecture for agents that explicitly addresses
heuristics: the CONSUMAT model, which attempts to
unify psychological theories of learning and satisfaction.
CONSUMAT agents make decisions according to a diverse
set of needs that produce antagonistic responses. For
example, the desire to taste a meal that is perceived as
delicious would promote eating, while the intention to reduce

Figure 1. The six decision rules of the CONSUMAT model as a
function of a continuous spectrum of dual-process cognition and
the uncertainty associated with information gathering (individual
or social).

the unnecessary consumption of food in order to achieve a
body shape that is considered beautiful would endorse the
opposite behaviour. Overall satisfaction is achieved only in
the long term, when most needs can be met at a reasonable
level without sacrificing one for the other. The agents’
dynamical decision system also deals with uncertainty in the
environment. As a result, agents create and apply heuristics
using basic learning processes.

Several decision-making models (Sloman, 1996; Chaiken
& Trope, 1999; Strack & Deutsch, 2004; Evans, 2008;
Frankish, 2010) have been designed that divide individual
and/or social cognition into two parts: intuition and
deliberation. These are portrayed as distinguishable modules
and are named: system/process I and II respectively. In
this framework, heuristics are developed and implemented
by process/system I, which then, in their turn, may or
may not be overridden by process/system II (Tversky &
Kahneman, 1974; Kahneman, 2003; Frankish, 2010). The
CONSUMAT heuristic is characterized by both the amount
of cognitive effort required (as in dual approaches) as well
as the degree of uncertainty associated with information
gathered from the environment. The first version of the
model (Jager & others, 2000; Jager, Janssen, De Vries,
De Greef & Vlek, 2000) describes four decision rules, which
were later extended to six (Jager & Janssen, 2002) (Figure
1). An agent deliberates when it considers all the possible
action pathways and chooses the one with the greatest utility.
This decision rule matches the actions of system/process II
in the dual description. The opposite rule, on the cognitive
effort dimension, is the blind repetition of actions (matching
with system/process I). Satisficing and improvement occur,
respectively, when the agent compares the utilities of the
distinct actions until one is found that meets their needs,
or until an improvement is found (Jager & Janssen, 2002).
These latter two strategies are adaptations of the deliberation
strategy which involve less cognitive effort. The selection
of a cognitive rule reflects two traits of agents - their
tolerance to uncertainty and their ambition. For example,
deliberative agents have a high aspiration level and low
uncertainty tolerance. In terms of uncertainty, imitative or
inquiring agents can obtain information from their peers,
and by imitating them, or comparing them with others, can
reduce the uncertainty they would otherwise have about the
potential success of a given strategy.

An update of the CONSUMAT model (Jager & Janssen,
2012) modifies the concept of social comparison to
that of inquiring, which better captures the informative
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influence of the social interaction between agents. While
normative influence implies group association by similarity,
in order to avoid being marginalized from the group, in
distinction, informative influence focuses on the interchange
of experiences and opinions and the evaluation of the person
giving the opinion. The biggest change in CONSUMAT II is
the reduction of the agent’s needs to a minimal set of three:
existential, social and personal needs, which are adapted
from the gain, normative and hedonic frames in goal-frame
theory (Lindenberg & Steg, 2007). Social needs are balanced
between two drives: being similar and being superior.
Satisfaction implies a particular degree of accomplishment
in the three independent needs and combines both current
utility and its future expectations. Uncertainty is calculated
only with respect to the variability of information on the
existential and social satisfaction dimensions.

The human-like cognitive behavior of CONSUMAT
agents is coupled to the environment via their human-like
needs. The existential need is their primary bond with the
world, while the personal need requires the development
of an identity by the agent. A model of primitive living
organisms that develop heuristics can still be supported
by considering an autopoietic identity (from the closure
of a cycle of systems which keep the agent alive), while
the incorporation of social needs can be related to the
gregariousness that certain groups of animals exhibit.

Social animals find themselves in a society, but without
a perfect understanding of its historic development. Ties
between the members are likely taken for granted by the
agents, which develop a desire to have a role in the group in
order to reduce the uncertainties of being alone. For primitive
living organisms, the gap between having an autopoietic
identity and being able to develop empathy with others seems
difficult to explain if we assume that empathy is a reflection
of an agent in other agents by a process of mental simulation.
This conception has been criticized by (Ratcliffe, 2017),
who proposes that the basis of empathy is the openness
to interpersonal differences. If social need is considered
embodied and enactive, the real distinction between an agent
with existential needs only, and another with the full set
of needs, is the degree of maturity of their ties with the
environment and with their peers.

Agent-based models
The present ABM aims to test how different degrees
of uncertainty in the environmental availability of energy
sources can promote and induce a positive selection for:
i) the emergence of certain preferred foraging and food
consumption strategies; ii) the implementation of particular
decision-making heuristics; and iii) a preference for higher
energy storage capacity. In this model, agents monitor their
energy, Eα(t), which determines their existence and ties
them to the environment.Eα(t) is degraded according to two
factors: the intentional activities performed by the agent and
the amount of energy required to maintain basal metabolic
functions. This basal energy expenditure per time step is
modeled as proportional to the internal energy of the agents
which would be a proxy of agents body weight, in analogy
with formulae the most relevant factor of the Mifflin-St.
Jeor equation (Mifflin, St Jeor, Hill, Scott, Daugherty &

Koh, 1990). However, to avoid non-eating resting agents to
live indefinitely the basal energy expenditure is constant for
agents with energy below an energy threshold ET .

Then, the basal expenditure is Eα(t)MB when Eα(t)
is bigger than ET and ETMB otherwise. MB represents
a constant rate of energy used for basic functions and
ETMB the very minimum energy amount needed to keep an
organism alive. Above the energy threshold ET , the linear
metabolic expenditure creates an upper bound on the energy
that agents may accumulate for a given value ofEs, where, at
that point, the agent’s metabolic expenditure is equal to the
amount of energy that can be consumed in any given time
step:

∆Eα(t) = Es −MbE
(max)
α = 0 ⇒ E(max)

α =
Es
Mb

(1)

An agent has a limited set of available intentional actions:
i) They can try to consume all the food on a given
position at any specific moment; ii) Can increase their
capacity for active perception to, in addition to observing
the place where they are located, perceive their surroundings
to identify food: and/or iii) can forage by moving to one
of the closest contiguous spatial positions. A combination
of these elements, as shown in Table 1, corresponds to
an agent strategy. Each strategy has an associated energy
cost, depending on whether perception and/or movement
are included. In conjunction with the base metabolism of
the agent, this leads to a net total energy expenditure at
a given time step. If the agent consumes and this energy
expenditure is less than Es then we may say that the
agent has “overeaten” at that time step, in that there is a
positive energy imbalance. In the case that the agent does not
consume or that Es is less than the total energy expenditure,
then there is a negative energy imbalance. This concept of
energy imbalance per time step can be aggregated and the
consequences of long term energy imbalances explored.

The environment in which the strategies are enacted is
modelled as a square lattice of spatial cells with periodic
boundary conditions, wherein agents occupy only a single
cell at a time, but where a cell can accommodate more
than one agent. Units of energy (food resources), Es,
equivalent to “portion size”, are situated at each cell of the
lattice and can be consumed by only one agent at a time.
Consumed resources are then regenerated in a given cell
with probability pg per unit time. Es and pg reflect the
food/energy resource availability of the environment and its
corresponding uncertainty.

Within this environment, an agent may decide to consume
or not at a given spatial position at a given time. An agent
may also perceive, or not, the existence of food resources in
the 8 cells adjacent to the agent’s current position, the energy
cost of perception being constant, Cp, per unit time. Finally,
an agent may move to an adjacent cell. This may be done in
conjunction with perception, whereupon the agent chooses
at random one of the cells that has been perceived to contain
food, if such exists, or, in the absence of perception, the agent
chooses a cell at random. The cost of movement is the agent’s
internal energy multiplied by a linear factor Cm to reflect the
fact that moving more mass requires more energy.

Actions follow a causal order: i) decide to eat/not eat; ii)
decide to perceive/not perceive, and then; iii) decide to move
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Eat Perceive Move γ0 γ1

S1. 0 0 0 Mb ∗ Eα 0
S2.∗ 1 0 0 Mb ∗ Eα 0
S3. 0 1 0 Mb ∗ Eα + Cp 0
S4.∗ 1 1 0 Mb ∗ Eα + Cp 0
S5. 0 0 1 Mb ∗ Eα Cm
S6.∗ 1 0 1 Mb ∗ Eα Cm
S7. 0 1 1 Mb ∗ Eα + Cp Cm
S8.∗ 1 1 1 Mb ∗ Eα + Cp Cm
S9.∗ 1 1 0 Mb ∗ Eα + Cp 0

1 1 1 Mb ∗ Eα + Cp Cm

Table 1. Strategies for agents and their corresponding energy
costs. 1 and 0 means that the corresponding action is executed
or not, respectively. ∗ indicates that the final energy state of the
strategy is not known a priori.

or not. This generates the eight possible action strategies (S1
to S8) shown in Table 1, to which is added an extra one, (S9),
in which moving is decided upon only after processing the
information from the perception step. When agents decide
not to eat, changes in energy are negative and known a priori.
However, when an agent implements a strategy that can
result in an increase in their energy, the corresponding result
is uncertain, in that it depends on whether they encounter
food resources or not.

In this model, in order to make contact with thrifty gene-
type arguments, we also explored the role of different energy
storage capacities. Specifically, we consider agents with
different accumulation limits, Lα(t), associated with the
maximum amount of energy they may store and consider
this as a key parameter associated with the agents’ strategies
and which may change in time according to the heuristic
used by the agent. Although we interpret this in the current
model as being associated with a cognitive, decision making
process, we believe that our results would be similar if the
model implementation was such that it was interpreted as a
genetically controlled parameter. What would change would
be the relative timescales involved, and the mechanisms by
which such a strategy is inherited or learned. In the case
where the agent has not reached its energy accumulation
limit, the energy change of an agent from one time step to
another is given by

∆Eα(t) = −γ0 − γ1Eα(t) + Esfeat(t, x, α), (2)

where γ0 and γ1 depend on the agent’s particular strategy
and their previous energy levels (Table 1 ). feat(t, x, α) = 1
when agent α finds food resources at cell x at time t and
consumes it, and is zero otherwise.

While a lack of energy can lead to systemic failure and
death, energy surplus affects agent survival indirectly and
gradually. Thus, if an agent consumes all their energy they
die. However, an excessive accumulation of energy can
also damage an agent by increasing their basal metabolism,
thereby increasing their risk of future starvation, and by
also affecting their ability to move. In the present model we
represent this latter effect by reducing the probability that
they can effectively move when their internal energy exceeds
a limit ET . Movement in the model then follows a simple
rule: Once an agent decides to move, the probability of doing

so is the following:

pm =


exp (Eα(t)− Es) if Eα(t) < Es

exp (ET − Eα(t)) if Eα(t) > ET

1 otherwise.

Agents with an internal energy Eα(t), between Es and ET ,
will move every time they decide to do so, while those that
have an energy bigger than ET , or smaller than Es, Is this
Es Chucho? Por que? would move less. The aim of this
feature, as mentioned, is to model the impact of overweight
or underweight on movement.

Model needs have different timescales regarding goal
realization (Lindenberg & Steg, 2007). Personal (hedonic)
needs are associated with pleasure and with an immediate
reward in terms of feelings, while existential needs have
a longer but still limited temporal horizon tied to resource
management. The normative or social dimension represents
what the agent ought to do and has the strongest dependence
on external support. Contrary to other needs, compliance
with social norms never implies that a state of satisfaction
is arrived at.

Eating is triggered by hunger, a sensation that has its
origin in the ventromedial hypothalamus, which controls
food consumption in order to maintain fat stores at a base
level. This makes obese individuals more hungry than lower-
weight ones as they need to maintain a higher lever of
reserves (Nisbett, 1972). This also happens when individuals
experience food deprivation. However, eating can also be
instigated in the absence of perceived hunger, such as in
cases of depression and anxiety (Plutchik, 1976), or with
emotional lability and negative feelings towards oneself
(Hudson & Williams, 1981). In this case, the decision to
overeat is decided in the context of the personality frame.
Overeating, then, can be multi-faceted, sometimes being
episodic, secretive, linked to different conditions for different
individuals and characterized by ingestion of high-calorie or
high-carbohydrate food (Ganley, 1989). Moreover, the over
consumption of energy can generate a pleasant feeling of
fullness and satiety mediated by leptin, which then impairs
further consumption (Morton, Blevins, Williams, Niswender,
Gelling, Rhodes, Baskin & Schwartz, 2005).

The corresponding model for needs and satisfaction for
simpler living organisms uses modified satisfaction and
uncertainty functions, keeping only those terms that are
directly related to their existential need. This model is
implemented in order to contrast the decision dynamic of
such an organism with that of a being that has a developed
sense of self, as well as a social interaction, and in order to
show how this affects their corresponding heuristic.

Decision rules are implemented in line with the
CONSUMAT schema, with the algorithms described in
Table 2. Although the heuristics can be applied to the choice
of strategy, S1-S9, in the current paper we restrict the
heuristics to be applied to the energy accumulation limits
only, returning to their application to the different foraging
strategies in a future paper. The four heuristics we consider
are: Repetition, optimization, imitation and inquiring (Jager,
Janssen, De Vries, De Greef & Vlek, 2000). Repetition is
the decision process that requires the least cognitive effort,
and is the simplest to implement, as it only requires that
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Heuristic Algorithm

Repetition L(α, t+ 1) = L(α, t)

Imitation L(α, t+ 1) = L
where L←R {Li|Li ∈ {L(α′, t)}α′∈Cα}

Inquiring L(α, t+ 1) =
argmaxL(S,t){Li|Li ∈ {L(α′, t)}α′∈Cα}

Optimization L(α, t+ 1) = argmaxL(a,t){L1, L2}
Table 2. Agent algorithms used to select an energy
accumulation limit (L) at time t according to the heuristics of the
CONSUMAT model. Agent α considers limits from other agents
α′ ∈ Cα, where Cα is the set of agents in cells that agent α can
perceive.

an agent keep doing the same thing. When an agent α
chooses a strategy by imitation or inquiring at a given time
step, they create a pool of possible alternatives (strategies or
accumulation limits), by observing those strategies α′ ∈ Cα
associated with agents that they can “perceive”. In the case
that the agent has no explicit perception element in their
strategy, then the set α′ is restricted to those strategies or
accumulation limits present in agents located at the same
position as the agent α. On the contrary, when perception
is an element in the agent’s strategy, then the set α′ is
extended to those strategies or accumulation limits that are
also located in adjacent cells. For imitation, the probability
to choose a particular energy accumulation trait depends
on the number of agents with that trait. como es esto
explicitamente Chucho?, while, for enquiring, they select
that accumulation limit associated with one of the agents
with maximum internal energy in the group they perceive.
Finally, in the case of optimization the agent always selects
the highest limit. otra vez, como es esto explicitamente
Chucho? In this model we assume that primitive agents are
also able to develop these heuristics despite their level of
complexity. Such a potentially unrealistic assumption arises
from the fact that the heuristics constitute a limited set of
rules that could be learned by reinforcement.

Uncertainty in the decision-making process, as described
in our model, arises from several sources. Obviously,
uncertainty in the distribution of food resources is an
important source. There is also uncertainty as to whether an
agent will be able to move at all if, for example, their internal
energy state corresponds to “overweight” or “underweight”.
In terms of the social component, there is uncertainty in
calculating the utility of the strategies associated with the
community of a given agent relative to the set of all
strategies. In other words, an agent does not a priori know
if the best strategy in their community is the best possible
strategy overall.

Finally, it is important to emphasize that, given that
this is a competitive system, even if an agent chooses the
optimal strategy, there is uncertainty as to the outcome, as a
competitor may have consumed the desired resource first. To
reduce this effect we can begin with a low density of agents,
whereupon the effective number of competitors will be small.

The availability of energy in the model is represented
by the environmental parameter, pg , which represents the
probability of regeneration of energy resources in any cell.

Other cell parameters include the quantity of food resource
per cell, Es, and the rates at which agents expend energy
according to their actions, Mb, Cm and Cp. Although
Es,Mb, Cp and Cm do not play a direct role in the
probability that a given agent will eat at a given time, they
greatly affect the survival rates of a given strategy at the
population level. pg can be set as a constant parameter
for every cell or can be time varying, so as to mimic,
for example, the effect of a food glut or a famine, where
there are periods of food abundance and periods of food
scarcity. We will consider the periods of such “feast and
famine” episodes to be chosen from a normal distribution
with a particular mean and standard deviation. We choose
this particular set of features to model the fact that, as
in the real world, uncertainty in the availability of food
resources and the regulation of internal energy can generate
an ecological pressure that favours certain foraging and
energy accumulation strategies, or can cause organisms to
restructure their behavior, so as to try different or new
heuristics in their decision making.

The lengths of the periods of abundance and famine play
a critical role in imposing selection pressure on the strategies
and heuristics and, in particular, on the energy accumulation
limits. For example, if we consider an agent with the least
costly metabolic settings (which implies an S2 strategy) that
consumes food every generation in the period of abundance,
having started from zero energy, then, given that there are
two distinct energy accumulation regimes, Eα < ET and
Eα > ET . In the former, the agent has an energy gain
Es −MbET per time step, while, in the former, the energy
gain per time step is Es −MbEα(t). Thus

Eα(t) = Eα(t− 1) + Es −MbEα(t− 1).

Considering an initial energy state Eα(t = 0) = ET , as |1−
Mb| < 1 we have

Eα(t) =
Es
Mb

(
1− (1−Mb)

t
)

+ (1−Mb)
tET .

The maximum energy that the agent can reach, EA, is
the energy accumulation limit, Lα(t), or the maximum
limit Emaxα , where metabolic energy expenditure exceeds
consumption. With either of these limits we may determine
how much time to reach EA

t(ET→EA) =
log(EA − Es

Mb
)− log(ET − Es

Mb
)

log(1−Mb)

If we take as initial condition Eα(t = 0) then we just need to
add in the time to get from energy 0 to energy ET , which is
t(0→ET ) = ET /(Es −MbET ).

creo que hay algo mal con el calculo abajo
identifying the number of generations of abundance that

an agent with the least costly metabolic settings (which
implies an S2 strategy) needs in order to exceed a certain
energy limit, EA. We assume for simplicity the case of an
agent that finds and consumes food every generation in the
period of abundance, having started from zero energy. When
the energy of the agent is below ET , the increase in energy
is Es − 1

Mb
every generation. The time to to pass from zero

energy to ET is,

t(0→ET ) =
ET

Es − 1
Mb
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When the agent’s energy reaches ET , the subsequent
increase in energy per period is given by Es −MbEα(t).
This implies that,

Eα(t) = Eα(t− 1) + Es −MbEα(t− 1).

Considering a starting state ofEα(t = 0) = ET we have that

Eα(t) = EA = Es

t−1∑
i=0

(1−Mb)
i + (1−Mb)

tET .

As |1−Mb| < 1 we can use the identity
∑n−1
i=0 a

i = 1−an
1−a ,

to find

EA =
Es
Mb

(
1− (1−Mb)

t
)

+ (1−Mb)
tET .

From this expression we calculate the number of generations
needed to pass from ET to EA.

t(ET→EA) =
log(EA − Es

Mb
)− log(ET − Es

Mb
)

log(1−Mb)

Finally we have that tab = t(0→ET ) + t(ET→EA) which is,

tab =
ET

Es − 1
Mb

+
log( EsMb

− EA)− log( EsMb
− ET )

log(1−Mb)
. (3)

On the other hand, we can also calculate the lowest
number of failed attempts to consume that as a consequence
produces the death of an agent that has the minimum basal
energy expenditure and an energy of EA. In this case, a
period of famine equal to this time or greater will almost
surely conduce agents with an accumulation limit of EA to
extinction. This is given by tfam = t(EA→ET ) + t(ET→0),

tfam =
log(ET )− log(EA)

log(1−Mb)
+

1

Mb
(4)

The above logic will be useful for understanding under what
conditions an agent with a given energy accumulation limit
may be expected to have a competitive advantage relative to
one with a lower limit, both in the capacity to accumulate
energy as well as to survive a famine. For example, if the
period of abundance is not sufficiently long for an agent with
a higher accumulation limit to accumulate more energy than
an agent with a lower limit then the higher limit is clearly of
no use.

Simulations
Agent systems were simulated with NetLogo 6.0.1
(Wilensky, 1999). The environment consisted of a square
grid of 41×41 cells with periodic boundary conditions.
The initial agent population was 1680 agents, with an
initial energy E0 = 2. The energy limits that determine the
probability of movement were set to ET = 20 and Emin =
2. The agent’s parameters, Mb, Cm, Cp, were fixed at values
0.05, 0.02 and 0.01 respectively. Thirty simulations were
performed for each combination of parameters.

As with any ABM, there is a potentially large parameter
space to be analysed. In the present study, as well as nine
foraging strategies and three heuristics, there are several

parameters that can be varied, as discussed in section 2.
Additionally, the spatio-temporal distribution of pg also
offers a rich source of variability for determining the relative
advantages of one set of agent characteristics versus another.
Below, we discuss only a subset of experiments and their
results that represent what we believe to be the most
important conclusions for understanding the possible origins
of the obesity epidemic.

The first sets of experiments were designed to better
understand under what environmental circumstances the
capacity to accumulate energy (fat) was advantageous, this
being related to the “thrifty gene” logic. As the capacity
to accumulate energy can be argued to be present in
other organisms than humans, we used only the existential
need and the heuristic “repetition”. In the first set of
experiments, we compared different accumulation limits
between 5 and 105 units in the context of the different
foraging and consumption strategies (S1 - S9) and followed
their evolution for 500 generations. The environmental
parameter Es was set to Es = 2. In every simulation, agents
were randomly initialized with one of two accumulation
limits, corresponding to 840 agents of each limit in the
initial population. One of them was chosen to be 5 and the
second was chosen to be one of 6, 15, 55 and 105. The
environmental parameter pg was varied from 0.1 (scarcity)
to 1.0 (abundance) in intervals of 0.1, and then from 0.01
(extreme scarcity) to 0.15 in intervals of 0.01. In all these
cases the environmental parameter pg was constant. With
these parameters, only agents with eating strategies (S2, S4,
S6, S8 and S9) can survive.

In a second set of simulations, pg was allowed to change in
order to mimic the effects of “gluts” and “famines”, modeled
by periods of complete abundance (when pg is equal to 1.0)
and periods of complete scarcity (when pg is equal to 0.0).
The periods of the gluts and famines were chosen from a
normal distribution, N (t, STD), with t = 40 for the famine
and 60 for the period of abundance. By varying the standard
deviation of the normal distribution we could introduce
different degrees of uncertainty into the availability of food
resources. We considered STD = 0 (constant periods), 1 and
5. System development was followed for 1000 generations,
with data collected by population for each action, decision
rule and accumulation limit. In these particular simulations
agents could have one of two accumulation limits: 55 and
105, and the amount of resources in every cell was increased
to Es = 3.0. In these experiments we also considered
heuristics other than repetition, the consequence being that
an agent could potentially change its energy accumulation
strategy over time by imitating the strategy of another agent,
or by deducing the existence of a better strategy from
concurrent agents (inquiring).

A final set of simulations was associated with presenting
a set of ten feast-famine cycles, as above, then continuing
with an energy rich environment, pg = 1, for a further
500 generations. The purpose of these simulations was to
investigate what happens if a period of resource uncertainty
is followed by a period of resource certainty.
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Results

The results of the first set of experiments, where agents
with different accumulation limits are competing in an
environment with a constant pg , can be seen in (Fig.
2). There, the vertical axis represents the difference in
the number of agents present in the population after 500
generations with differing accumulation limits versus agents
with a limit of 5. Thus, in the top left figure we see
a slight advantage for higher accumulation limits in the
case of strategy S2 for pg ∼ [0.01− 0.04], with there being
approximately 20-30 agents more with accumulation limits
> 5 than with accumulation limit 5. This relative advantage
of a “thrifty gene”-type strategy is present only for those
strategies - S2 and S4 - that do not actively forage, or that
forage in a random fashion - S6.

The two highest accumulation limits, EA = 55 and EB =
105, appear to have identical behaviours when using a fixed
strategy within an environment with a fixed probability of
regeneration. Under these conditions, food is never scarce
enough, nor abundant enough, to turn a higher accumulation
limit into an ecological advantage. However, it is possible
to find temporal patterns of food availability where a higher
energy storage capacity can be beneficial and, indeed, where
adequate storage becomes fundamental to survival.

In accordance with Eq. (1), for an environment where
Es = 2.0, and Mb = 0.05, agents cannot exceed Eα(t) =
40, thereby explaining the similarity in the populations of
agents with limits 55 and 105 (Fig. 2). However, if we
increase Es to 3.0, it is possible to find scenarios, when
the period of abundance is large enough, where the agent’s
energy exceeds the limit EA = 55. For the given parameters,
in Eq. (3) and (4) we have that tab = 50.54 and tfam =
39.72. If we then set the abundance and famine periods to 60
and 40 respectively, for two competing populations of agents
that use the same foraging and consumption strategy, but
have distinct energy storage limits, 55 and 105, respectively,
we might expect to see a clear advantage for those agents
with a higher accumulation limit. This is the case. However,
only strategies S2 and S9 have agent populations that avoid
becoming extinct or close to extinct for both accumulation
limits in order for this selective advantage to manifest itself.

The results of the second set of experiments can be seen in
Fig. 3. In the Top graph, we show box plots of the populations
associated with the last generation after completing 10 feast-
famine cycles for different decision heuristics. Foraging
strategy S9 was used by all agents. We can observe that
agents with energy limit 55 end with an average population
of around 43 for imitation, but close to zero for the repetition
and inquiring heuristics. When the accumulation limit is 105,
however, the average population is greater than 100 for every
considered heuristic. In other words, survival probability is
significantly enhanced for the higher energy accumulation
limit agents. On the other hand, the population variance of
the lower accumulation limit agents is higher. Furthermore,
note that the variance for the imitation heuristic is greater
than that of the inquiring heuristic which, in its turn, is
greater than that of the repetition heuristic.

In Fig. 3 we see the population average (Middle graph)
and the average energy per agent (Bottom graph) throughout
the 10 feast-famine cycles for different heuristics and
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Figure 2. Difference in population size of competing agents
with different energy accumulation limits, where agents repeat
the same strategy: (Top:) S2, (Center, up:) S4, (Center:) S6,
(Center, down:) S8 and (Bottom:) S9, for 500 generations in an
environment with a constant value of pg between 0.01 and 0.15.
50% of the agents start with an energy limit of 5 and 50% start
with an energy limit of 6, 15, 55 or 105 respectively. Graphs
show the average of 30 repetitions using the same parameters.
The gray points in the background represent the result for every
experiment.

different initial accumulation limits, where the averages
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Figure 3. Top: Box plots of the population of agents with
accumulation limits 55 and 105, at time t = 1000 when foraging
strategy S9 is performed and the agent’s accumulation limit is
potentially subject to adaptive change according to one of three
heuristics: repetition, imitation and inquiring. Comparison
through a set of ”feast and famine cycles” of: Middle: the
average population and Bottom: the average energy during a
particular cycle for S9 agents with accumulation limits of 55 and
105. In these simulations, agents experience a ”glut” period,
when food is regenerated immediately after eaten, followed by a
”famine” period where food is not regenerated. These periods
are fixed to 60 and 40 generations respectively. The average
per cycle considers both periods and the 30 repetitions of every
set of parameters and error bars on y axis represent the
standard deviation on the assemble. Graphs are lightly
displaced on the x-axis for visualization.

are computed by considering the abundance phase of each
cycle. Again, we show only results for the S9 foraging
strategy. We can see that, for each heuristic, the population
average is greater for the higher accumulation limit agents
throughout the set of feast-famine cycles, although there are
significant differences between the results of one heuristic
and another. Note that limit 55 agents exhibit steep,
monotonic declines after the first feast-famine cycle, with
the decrease being particularly notable for the repetition and
inquiring heuristics. On the other hand, the behaviour of the

limit 105 agents is quite distinct, with an increase between
the first and second cycles for the inquiring heuristic,
followed by a very sharp decline between the second and
fourth cycles. On the other hand, the imitation heuristic
shows a sharp decline from the first to second cycles,
followed by a more gradual decline from the second to the
fourth. For both the inquiring and imitation heuristics the
population average after the fourth cycle is constant. Finally,
for the repetition heuristic, the population exhibits a subtle
decrease after the third cycle, finishing with an average
around 750 after 10 cycles.

Turning now to the average energy (Bottom graph), for the
limit 55 agents, for the inquiring heuristic, the average energy
goes to zero after the first cycle, while for the repetition
heuristic it decreases gradually from 35 to 16 over the full set
of cycles. Interestingly, for the imitation heuristic it increases
slightly after the second cycle, actually exceeding that of the
limit 105 agents for a couple of cycles. For the latter agents,
the average energy is relatively constant throughout the set
of cycles, ∼ 35− 40. However, the ordering of the average
energy as a function of heuristic is opposite to the ordering
of the population average: repetition, inquiring and imitation
for the latter and imitation, inquiring and repetition for the
former.

The introduction of uncertainty in the duration of the feast
and famine periods produces different results according to
the decision rule followed by the agents. We show only
accumulation limit 105 agents, as limit 55 agent populations
could not survive the added uncertainty. We can clearly see
that extra uncertainty has an important detrimental effect,
independently of the heuristic used, with average populations
decreasing as the uncertainty (standard deviation) increases
(Fig. 4). However, this ordering of population sizes as a
function of uncertainty is not uniformly present as a function
of time but, rather, emerges. Indeed, there is an interesting
transient behaviour, such that a higher uncertainty can lead
to higher average populations in the initial cycles in the case
of the imitation and inquiring heuristics.

In terms of average energy (Fig. 5), the standard deviation
5 results show that the average energy per agent in this
case is substantially lower than the corresponding standard
deviation 1 or 0 values, independently of the heuristic used.
However, the differences between the standard deviation 1
and 0 results are both small and vary between heuristics with
the energy being lower for the standard deviation 1 results
than the standard deviation 0 ones for the repetition and
imitation heuristics, but higher for the inquiring heuristic.

In Fig. 6 we show the results for the average energy (right)
and average population (left) for simulations of agents with
accumulation limits of 55 and 105, using foraging strategy
S9 and the repetition heuristic, in the case where there are
10 feast-famine cycles of 60 and 40 periods respectively, but
where the cycles are followed by a period of 500 generations
of constant resource availability. The average population
follows exactly the pattern set by the 10 feast-famine cycles
as seen in Fig. 4 - middle - where there is a gradual
degradation in the population of the limit-105 agents and
an almost total extinction of the limit-55 agents. However,
after the 10th cycle the agent populations are constant.
In terms of energy, the surviving agents reach maximum
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Figure 4. Comparison through a set of 10 “feast and famine
cycles” of uncertain duration of the average population at a
particular cycle for S9 agents with an accumulation limit of 105
for systems where the employed heuristic is; Top: repetition,
Middle: imitation; or Bottom: inquiring. In these simulations,
agents experience a “glut” period, when food is regenerated
immediately after being eaten, followed by a “famine” period
where food is not regenerated. The feast and famine periods
are chosen from a normal distribution with means 60 and 40
respectively, and with a standard deviation of 0, 1 or 5. The
average per cycle considers both periods and the 30 repetitions
of every set of parameters and error bars on the y axis
represent the standard deviation of the ensemble. Graphs are
lightly displaced on the x-axis for easier visualization.

limits of 62.6 for the limit-105 agents and 55 for the limit-
55 agents. Although we are showing here only the S9-
repetition combination, analogous results hold for different
heuristics or, indeed, other strategies. The combination of
strategy and heuristic serves to determine which agents
survive the 10 cycles. However, any agent that does survive
to the constant period of abundance quickly reaches its
corresponding energy limit.
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Figure 5. Comparison through a set of 10 “feast and famine
cycles” of uncertain duration of the average energy at a
particular cycle for S9 agents with an accumulation limit of 105
for systems where the employed heuristic is; Top: repetition,
Middle: imitation; or Bottom: inquiring. In these simulations,
agents experience a “glut” period, when food is regenerated
immediately after being eaten, followed by a “famine” period
where food is not regenerated. The feast and famine periods
are chosen from a normal distribution with means 60 and 40
respectively, and with a standard deviation of 0, 1 or 5. The
average per cycle considers both periods and the 30 repetitions
of every set of parameters and error bars on the y axis
represent the standard deviation of the ensemble. Graphs are
lightly displaced on the x-axis for easier visualization.

Discussion

The results of the experiments seen in Figures 2 and 3
exhibit under what circumstances a particular energy storage
strategy has an advantage over others. Figure 2 shows that
there is a slight advantage associated with a higher capacity
to store energy - a “thrifty” gene - in environments with
scarce food resources, but only for strategies S2, S4 and S6.
It is stating the obvious to say that the no-eating strategies,
S1, S3, S5 and S7, do not survive. However, this is an
extreme case of a more general trait - that there is no
point having a thrifty gene if there does not exist another
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Figure 6. Example of a period of 500 generations of resource
abundance after a set of 10 “feast and famine cycles”: Average
energy at a particular generation for S9 agents with
accumulation limits of 55 and 105, where the employed heuristic
is Top: repetition, Middle: imitation or Bottom: inquiring.

fundamental and necessary characteristic: that agents can
accumulate energy beyond their immediate metabolic needs.
This, in turn, has two requirements: first, there must be
enough energy resources present in the environment so as to
make it possible to accumulate energy in the first place; and,
second, the agents must behave so as to consume more than
their immediate metabolic needs. In this sense, they must
exhibit a conduct of “overeating”.

So, what is the origin of the small advantage for S2, S4
and S6 and why there is no advantage for S8 and S9? In
the case of S2, the relative advantage accrues from the fact
that, by chance, some agents manage to consume a higher
than average amount of food resources in a given cell, so
that the storage of this extra energy allows them to survive
in that cell when there is less food than expected. In other
words, the uncertainty inherent in the distribution of food
resources that can lead to agents dying, by “bad luck”, can
be partially offset by an energy storage capacity that is
utilized by those agents that, by “good luck”, manage to
obtain more food resources than the average. Again, though,
this requires sufficient energy resources and the tendency
to overeat beyond their immediate metabolic needs. This
advantage is exacerbated for strategy S4, as this strategy
involves the extra energy cost associated with perception.
The advantage is less for S6, as these agents are able to
forage, and thus can partially offset the impact of uncertainty
at a given location by having access to food resources in
other cells. This is even more the case with strategies S8 and
S9, where the foraging is done in a more intelligent manner,
being directed precisely to those cells where there are food
resources.

It is interesting to note that in the case of very scarce
resources - pg < 0.01 - the advantage disappears. This is
due to the fact that the probability of accumulating sufficient
energy above the baseline level of 5 is negligible. In other
words, energy storage is of no use if food is so scarce that it is
highly improbable to obtain enough energy resources to take
advantage of it. On the contrary, above a certain pg , energy
storage is not even necessary, as there are always sufficient
food resources available. Finally, such energy storage offers
no advantage to those agents that can forage intelligently.

If greater energy storage capacity offers no significant
advantage in scarce resource environments, then under what
circumstances might it be useful? The results seen in Figures
3,4 and 5 clearly answer this question: Firstly, in those
environments where periods of relative scarcity and relative
abundance alternate; and, secondly, in those environments
that have some degree of regularity in the duration of the
feast-famine cycles, with the relative advantage depending
on the foraging and consumption strategy used, as well as
the precise energy storage capacity relative to the duration
of the periods of abundance and famine. Indeed, our choice
of famine period is such that an agent with the minimal
energy expenditure (without perception or movement) and
with an accumulation limit of 55 could not survive without
the consumption of energy resources. Agents that forage
can potentially survive during the famine, in spite of their
extra energy cost, by finding any unconsumed food resources
that are left over from the abundance period when the
famine began. Of course, such an agent must also survive
the competition from its peers in the search for these
unconsumed resources.

The results for systems with fixed periods of abundance
and famine confirm the survival of S2 (as the system
parameters have been chosen to make them do so). We can
think of this as the “hibernating bear” scenario, wherein the
advantage of energy accumulation accrues only if the agent
maintains the lowest energy expenditure possible. Apart
from S2, however, only the S9 strategy is able to support
large populations of agents that have the higher accumulation
limit. The other strategies all have to deal with extra energy
costs, and, in a time of famine, this places a great deal of
extra selection pressure. S9 agents, however, can regulate
their expenditure of energy based on their perception of
the environment, remaining static (“sedentary”) during the
abundance periods as the resource regeneration guarantees
the existence of food in the next time step. In the periods of
scarcity, every amount of saved energy is vital. In this case,
rather than a “thrifty” gene as being of relevance, we may
speak of the possibility of a “sloth” gene, that suppresses
physical activity in circumstances where active foraging is
not advantageous. Of course, we do not mean to imply that
there is a specific gene associated with such inactivity, but
that such a behaviour could have a genetic origin.

Thus, higher energy storage alone is not sufficient
to survive. Rather, it is the intelligent balance between
consumption in place versus movement that permits the
higher accumulation limit to exhibit an advantage. More
generally, we see that the benefit of energy accumulation
limits - the thrifty gene - is dependent on the cognitive
strategy used by the agent relative to the temporal availability
of food and the competition from other agents. Of course, as
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emphasized, a necessary condition for taking advantage of
exploiting a higher accumulation limit is also the potential to
keep consuming in order to reach that limit above and beyond
the short-term energy needs of the agent. This is manifest
in the fact that during the periods of abundance, S2 and S9
agents consume more than their metabolic needs for the next
generation.

The existence of heuristics introduces an extra level of
complexity by permitting agents to change their energy
accumulation strategy in the case of imitation and inquiring,
with the difference between them being that agents using
the imitation heuristic simply copy at random an energy
accumulation strategy in their community, whereas an agent
using the inquiring strategy will always choose the best one
in that community. The effect of this can be seen in Fig. 4.
For the inquiring heuristic, many of the 840 original limit-55
agents have imitated the superior 105-limit strategy. Those
that don’t - die. The fact that there is a collapse in the 105-
limit population after the second cycle is due to the fact that
they are victims of their own success, with the resources
available during the famine periods not sufficient to support
such a large population. For the imitation heuristic, limit-
105 agents may copy limit-55 agents, as well as vice versa,
and, in this case, those limit-105 agents that have switched
are more at risk. However, there is a bias, in that during
the famine the limit-55 agents will have a higher mortality
rate and therefore there will be less of them to imitate, thus
leading to a relative excess of limit-105 agents. With the
repetition strategy, there is no possibility for a limit-55 agent
to learn or copy the limit-105 strategy, and therefore the
mortality of the limit-55 agents is almost total. The repetition
heuristic for the limit-105 agents is the most successful
because it avoids both the mistakes associated with the
imitation heuristic and the excessive level of initial success
of the agents with the inquiring heuristic.

Finally, uncertainty in the resource environment associ-
ated with the length of the feast and famine periods in
general is detrimental. Certainly it leads to a great deal
of variability in both the average population size and the
average energy of the agents. For repetition, uncertainty in
the availability of energy resources greatly decreases the
population size of the superior limit-105 agents that can be
maintained, with more than 50% of the agents dying across
the cycle for std 1 and almost total extinction for std 5. This
harks to the very delicate energy balance in place, where
agents can just about make it through a given famine if
its duration is 40 but a famine that lasts a bit longer can
easily lead to death. If a famine lasts less than the mean
however, the positive consequences - the accumulation of a
bit more energy - are minimal compared to death. From an
evolutionary perspective there is a strong truncation selection
in play.

In the case of imitation, we see that the effect on the
population average of the extra variability associated with
the availability of energy resources is masked by the intrinsic
variability inherent in the mistakes made by the limit-105
agents that imitate the limit-55 agents. Interestingly, although
the average population sizes are similar over the first four
cycles, the average energy decreases monotonically as a
function of the standard deviation. This is due to the highly
asymmetric nature of the effects of uncertainty in the feast

versus the famine periods. If the feast period lasts longer
this is of no significant benefit as the limit-105 agents reach
an energy accumulation limit wherein their consumption
and their metabolic needs are equal. On the other hand, as
emphasized, a longer famine period easily leads to death.
This is a “gambler’s ruin” type effect.

For inquiring, we see std = 5 is definitely inferior in both
average population and average energy. Interestingly, the std
= 1 results are very similar to the std = 0 results for average
energy and where the average population exhibits a less
catastrophic collapse than the std = 0 population in that the
uncertainty dilutes to some degree the competition between
the agents. Additionally, the inquiring agents in the std = 1
scenarios have the possibility of storing a bit of extra energy
during those periods of abundance that last longer than 60
periods.

Turning finally to the results of Fig. 6, we believe that
this result explains the current obesity epidemic if we take
the feast-famine cycles to represent our “prehistoric/historic”
past, with both predictable and unpredictable components
to food resource availability, and the last 500 generations
representing our predictable and ample food resource
present. In other words, the survivors of the uncertain past
that possessed the thrifty genotype were predestined to reach
their maximum energy limits. In the case of the limit-
105 agents this maximum, 62.6, emerges from an energy
balance between constant consumption that is matched
by a corresponding metabolic expenditure. This metabolic
expenditure involves no energy costs of movement, as the
S9 agents just stay in one place, taking advantage of the
predictable energy resources that constantly appear. The
energy cost is purely associated with their base metabolism,
having to maintain a higher body mass. This limit of 62.6
is sensitive to the proportionality factor that determines
what proportion of energy is used to maintain the agent
metabolically. For any surviving limit-55 agent, however,
their energy limit in the period of constant abundance is fixed
by the “physiological” limit of 55.

Conclusions
Two important characteristics of the obesity epidemic are its
ubiquity and its resilience. With respect to ubiquity: What
differs between one country and another is not whether there
is a problem with overweightedness and obesity, and its
concomitant health problems, but, rather, just how severe
the problem is. Effectively, only some sub-Saharan countries
have avoided the problem. With respect to resilience, it
exists at both the individual level and the group level,
where, at the individual level, reversion of the obese state
to normal weight is very difficult (Fildes, Charlton, Rudisill,
Littlejohns, Prevost & Gulliford, 2015), while at the group
level it has been exceedingly difficult to design public health
policies that have a significant impact and are widely adopted
by the population.

Two potential, complementary explanations for the
ubiquity of the obesity epidemic are genetics, such as the
thrifty genotype hypothesis, and the recent development of
an obesogenic environment. Thrifty genotype explanations
blame our genetic heritage, but in a causally indirect way, in
that the purported genes are associated with physiological
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adaptations that make it easier to get fat. On the other
hand, blaming the environment seems to neglect the fact
that we ourselves are the creators of that environment. It is
undeniable that widespread obesity was not a problem for our
prehistoric ancestors but that it is now. But how to you test
hypotheses about such changes? ABM are, in spite of their
defects, at least one promising avenue for creating and testing
such hypotheses, as we have done here. If we take our energy
storage parameter as a proxy for a “physiological” thrifty
gene, what we have shown here is that, indeed, it can offer a
selective advantage in the context of resource environments
that mimic feast and famine cycles, with the feast period
being essential in order to store up energy in the first place.
However, we have also shown that there must be present two
important behaviour types - conducts - in order for extra
energy storage to be a useful adaptation: overconsumption
and sedentariness. By overconsumption we mean that an
agent must consume above and beyond their base metabolic
level over an extended period of time. By sedentariness,
we mean that energy expenditure by unnecessary activity is
selected against. This is manifest in the success of the S9
strategy, where movement is initiated only if there is no food
resource in the agent’s cell but there is in an adjacent cell.

As our results indicate that there is a selective advantage in
overconsumption and sedentariness in energy environments
that have periods of abundance and scarcity and, more
generally, uncertainty, we must ask how might this selective
advantage have manifested itself? Such a strong selective
effect must surely have induced a genetic response and,
subsequently, left a strong genetic imprint. We believe that
the legacy of a genetically imprinted tendency to both
overconsume and be sedentary, when combined with a thrifty
genotype that gives the opportunity to store the excess energy
that accrues from these behaviours, is precisely what has
led to the current obesity epidemic. Indeed, our simulation
of an energy rich environment after a period of selection
through feast-famine cycles clearly shows that agents reach
their maximum energy storage through the twin effects of
overconsumption and sedentariness.

Finally, although there is much future work to be done,
we can see the subtle complexity that enters when adding
in heuristics which, here, represent variation, and can
be thought of as analogs of mutation or learning. The
random imitation of strategies within an agent’s community
generates the possibility of an advantageous change for a
limit-55 agent changing to a limit-105 strategy and the
corresponding disadvantageous change a limit-105 agent
changing strategy to limit-55. Compared to the pure
repetition of the limit-105 strategy however, such imitation
is disadvantageous to the population as a whole. On the
contrary, for the inquiring heuristic, the limit-55 agents
quickly copy the limit-105 agents which, in turn, leads to
a population crash due to excess competition.
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